dc.contributor.authors |
Comert, Serap Ercan; Yazgan, Harun Resit; Turk, Gamze |
|
dc.date.accessioned |
2023-01-24T12:09:01Z |
|
dc.date.available |
2023-01-24T12:09:01Z |
|
dc.date.issued |
2022 |
|
dc.identifier.issn |
1923-2926 |
|
dc.identifier.uri |
http://dx.doi.org/10.5267/j.ijiec.2022.6.002 |
|
dc.identifier.uri |
https://hdl.handle.net/20.500.12619/99755 |
|
dc.description |
Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince telif haklarına uygun olan nüsha açık akademik arşiv sistemine açık erişim olarak yüklenmiştir. |
|
dc.description.abstract |
As a result of the rapidly increasing distribution network, the toxic gases emitted by the vehicles to the environment have also increased, thus posing a threat to health. This study deals with the problem of determining green vehicle routes aiming to minimize CO2 emissions to meet customers' demand in a supermarket chain that distributes fresh and dried products. A new method based on clustering algorithms and Hopfield Neural Network is proposed to solve the problem. We first divide the large-size green vehicle routing problem into clusters using the K-Means and K-Medoids algorithms, and then the routing problem for each cluster is found using the Hopfield Neural Network, which minimizes CO2 emissions. A real-life example is carried out to illustrate the performance and applicability of the proposed method. The research concludes that the proposed approach produces very encroaching results. (C) 2022 by the authors; licensee Growing Science, Canada |
|
dc.language |
English |
|
dc.language.iso |
eng |
|
dc.publisher |
GROWING SCIENCE |
|
dc.relation.isversionof |
10.5267/j.ijiec.2022.6.002 |
|
dc.subject |
Engineering |
|
dc.subject |
Operations Research & Management Science |
|
dc.subject |
Green vehicle routing problem |
|
dc.subject |
Hopfield Neural Network |
|
dc.subject |
K-means clustering algorithm |
|
dc.subject |
K-medoids clustering algorithm |
|
dc.title |
Hopfield neural network based on clustering algorithms for solving green vehicle routing problem |
|
dc.type |
Article |
|
dc.identifier.volume |
13 |
|
dc.identifier.startpage |
573 |
|
dc.identifier.endpage |
586 |
|
dc.relation.journal |
INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING COMPUTATIONS |
|
dc.identifier.issue |
4 |
|
dc.identifier.doi |
10.5267/j.ijiec.2022.6.002 |
|
dc.identifier.eissn |
1923-2934 |
|
dc.contributor.author |
Comert, Serap Ercan |
|
dc.contributor.author |
Yazgan, Harun Resit |
|
dc.contributor.author |
Turk, Gamze |
|
dc.relation.publicationcategory |
Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı |
|
dc.rights.openaccessdesignations |
gold |
|