Açık Akademik Arşiv Sistemi

L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets

Show simple item record

dc.contributor.authors Barua, Prabal Datta; Tuncer, Ilknur; Aydemir, Emrah; Faust, Oliver; Chakraborty, Subrata; Subbhuraam, Vinithasree; Tuncer, Turker; Dogan, Sengul; Acharya, U. Rajendra
dc.date.accessioned 2023-01-24T12:08:55Z
dc.date.available 2023-01-24T12:08:55Z
dc.date.issued 2022
dc.identifier.uri http://dx.doi.org/10.3390/diagnostics12102510
dc.identifier.uri https://hdl.handle.net/20.500.12619/99701
dc.description Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince telif haklarına uygun olan nüsha açık akademik arşiv sistemine açık erişim olarak yüklenmiştir.
dc.description.abstract Background: Sleep stage classification is a crucial process for the diagnosis of sleep or sleep-related diseases. Currently, this process is based on manual electroencephalogram (EEG) analysis, which is resource-intensive and error-prone. Various machine learning models have been recommended to standardize and automate the analysis process to address these problems. Materials and methods: The well-known cyclic alternating pattern (CAP) sleep dataset is used to train and test an L-tetrolet pattern-based sleep stage classification model in this research. By using this dataset, the following three cases are created, and they are: Insomnia, Normal, and Fused cases. For each of these cases, the machine learning model is tasked with identifying six sleep stages. The model is structured in terms of feature generation, feature selection, and classification. Feature generation is established with a new L-tetrolet (Tetris letter) function and multiple pooling decomposition for level creation. We fuse ReliefF and iterative neighborhood component analysis (INCA) feature selection using a threshold value. The hybrid and iterative feature selectors are named threshold selection-based ReliefF and INCA (TSRFINCA). The selected features are classified using a cubic support vector machine. Results: The presented L-tetrolet pattern and TSRFINCA-based sleep stage classification model yield 95.43%, 91.05%, and 92.31% accuracies for Insomnia, Normal dataset, and Fused cases, respectively. Conclusion: The recommended L-tetrolet pattern and TSRFINCA-based model push the envelope of current knowledge engineering by accurately classifying sleep stages even in the presence of sleep disorders.
dc.language English
dc.language.iso eng
dc.publisher MDPI
dc.relation.isversionof 10.3390/diagnostics12102510
dc.subject General & Internal Medicine
dc.subject L-tetrolet pattern
dc.subject sleep stage expert system
dc.subject multiple pooling decomposition
dc.subject insomnia
dc.subject EEG signal classification
dc.title L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets
dc.type Article
dc.contributor.authorID Aydemir, Emrah/0000-0002-8380-7891
dc.contributor.authorID Acharya, U Rajendra/0000-0003-2689-8552
dc.contributor.authorID DOGAN, Sengul/0000-0001-9677-5684
dc.contributor.authorID TUNCER, Turker/0000-0002-5126-6445
dc.contributor.authorID Faust, Oliver/0000-0002-3979-4077
dc.contributor.authorID Barua, Prabal Datta/0000-0001-5117-8333
dc.contributor.authorID Chakraborty, Subrata/0000-0002-0102-5424
dc.identifier.volume 12
dc.relation.journal DIAGNOSTICS
dc.identifier.issue 10
dc.identifier.doi 10.3390/diagnostics12102510
dc.identifier.eissn 2075-4418
dc.contributor.author Barua, Prabal Datta
dc.contributor.author Tuncer, Ilknur
dc.contributor.author Aydemir, Emrah
dc.contributor.author Faust, Oliver
dc.contributor.author Chakraborty, Subrata
dc.contributor.author Subbhuraam, Vinithasree
dc.contributor.author Tuncer, Turker
dc.contributor.author Dogan, Sengul
dc.contributor.author Acharya, U. Rajendra
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rights.openaccessdesignations gold, Green Published


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record