Abstract:
Background and Purpose: Machine learning models have been used to diagnose schizophrenia. The main purpose of this research is to introduce an effective schizophrenia hand-modeled classification method. Method: A public electroencephalogram (EEG) signal data set was used in this work, and an automated schizophrenia detection model is presented using a cyclic group of prime order with a modulo 17 operator. Therefore, the presented feature extractor was named as the cyclic group of prime order pattern, CGP17Pat. Using the proposed CGP17Pat, a new multilevel feature extraction model is presented. To choose a highly distinctive feature, iterative neighborhood component analysis (INCA) was used, and these features were classified using k-nearest neighbors (kNN) with the 10-fold cross-validation and leave-one-subject-out (LOSO) validation techniques. Finally, iterative hard majority voting was employed in the last phase to obtain channel-wise results, and the general results were calculated. Results: The presented CGP17Pat-based EEG classification model attained 99.91% accuracy employing 10-fold cross-validation and 84.33% accuracy using the LOSO strategy. Conclusions: The findings and results depicted the high classification ability of the presented cryptologic pattern for the data set used.
Description:
Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince telif haklarına uygun olan nüsha açık akademik arşiv sistemine açık erişim olarak yüklenmiştir.