Açık Akademik Arşiv Sistemi

Binary Representation of Polar Bear Algorithm for Feature Selection

Show simple item record

dc.contributor.authors Mirkhan, Amer; Celebi, Numan
dc.date.accessioned 2023-01-24T12:08:50Z
dc.date.available 2023-01-24T12:08:50Z
dc.date.issued 2022
dc.identifier.issn 0267-6192
dc.identifier.uri http://dx.doi.org/10.32604/csse.2022.023249
dc.identifier.uri https://hdl.handle.net/20.500.12619/99651
dc.description Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince telif haklarına uygun olan nüsha açık akademik arşiv sistemine açık erişim olarak yüklenmiştir.
dc.description.abstract In most of the scientific research feature selection is a challenge for researcher. Selecting all available features is not an option as it usually complicates the research and leads to performance drop when dealing with large datasets. On the other hand, ignoring some features can compromise the data accuracy. Here the rough set theory presents a good technique to identify the redundant features which can be dismissed without losing any valuable information, however, exploring all possible combinations of features will end with NP-hard problem. In this research we propose adopting a heuristic algorithm to solve this problem, Polar Bear Optimization PBO is a metaheuristic algorithm provides an effective technique for solving such kind of optimization problems. Among other heuristic algorithms it proposes a dynamic mechanism for birth and death which allows keep investing in promising solutions and keep dismissing hopeless ones. To evaluate its efficiency, we applied our proposed model on several datasets and measured the quality of the obtained minimal feature set to prove that redundant data was removed without data loss.
dc.language English
dc.language.iso eng
dc.publisher TECH SCIENCE PRESS
dc.relation.isversionof 10.32604/csse.2022.023249
dc.subject Computer Science
dc.subject Optimization
dc.subject rough set
dc.subject feature selection
dc.subject heuristic algorithms
dc.title Binary Representation of Polar Bear Algorithm for Feature Selection
dc.type Article
dc.identifier.volume 43
dc.identifier.startpage 767
dc.identifier.endpage 783
dc.relation.journal COMPUTER SYSTEMS SCIENCE AND ENGINEERING
dc.identifier.issue 2
dc.identifier.doi 10.32604/csse.2022.023249
dc.contributor.author Mirkhan, Amer
dc.contributor.author Celebi, Numan
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rights.openaccessdesignations hybrid


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record