Açık Akademik Arşiv Sistemi

ON PERFECT POWERS IN k-GENERALIZED PELL SEQUENCE

Show simple item record

dc.contributor.authors Siar, Zafer; Keskin, Refik; Oztas, Elif Segah
dc.date.accessioned 2023-01-24T12:08:46Z
dc.date.available 2023-01-24T12:08:46Z
dc.identifier.issn 0862-7959
dc.identifier.uri http://dx.doi.org/10.21136/MB.2022.0033-22
dc.identifier.uri https://hdl.handle.net/20.500.12619/99612
dc.description Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince telif haklarına uygun olan nüsha açık akademik arşiv sistemine açık erişim olarak yüklenmiştir.
dc.description.abstract Let k 2 and let (P(k) n )n>2-k be the k-generalized Pell sequence defined byP(k) n = 2P(k) n-1 + P(kn-2) + ... + P(k) n-kfor n 2 with initial conditionsP(k) -(k-2)= P(k-(k) -3)= ... = P(k) -1 = P0(k) = 0, P(k) 1 = 1.In this study, we handle the equation Pn(k) = ym in positive integers n, m, y, k such that k, y 2, and give an upper bound on n. Also, we will show that the equation P(k) n = ym with 2 y 1000 has only one solution given by P7(2) = 132.
dc.language English
dc.language.iso eng
dc.publisher INST MATHEMATICS, AS CR
dc.relation.isversionof 10.21136/MB.2022.0033-22
dc.subject Mathematics
dc.subject Fibonacci and Lucas numbers
dc.subject exponential Diophantine equation
dc.subject linear forms in logarithms
dc.subject Baker?s method
dc.title ON PERFECT POWERS IN k-GENERALIZED PELL SEQUENCE
dc.type Article
dc.type Early Access
dc.relation.journal MATHEMATICA BOHEMICA
dc.identifier.doi 10.21136/MB.2022.0033-22
dc.identifier.eissn 2464-7136
dc.contributor.author Siar, Zafer
dc.contributor.author Keskin, Refik
dc.contributor.author Oztas, Elif Segah
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rights.openaccessdesignations gold


Files in this item

This item appears in the following Collection(s)

Show simple item record