Açık Akademik Arşiv Sistemi

Determining optimal machine part replacement time using a hybrid ANN-GA model

Show simple item record

dc.contributor.authors Gokler, S. H.; Boran, S.
dc.date.accessioned 2023-01-24T12:08:46Z
dc.date.available 2023-01-24T12:08:46Z
dc.date.issued 2022
dc.identifier.issn 1026-3098
dc.identifier.uri http://dx.doi.org/10.24200/sci.2020.52828.2902
dc.identifier.uri https://hdl.handle.net/20.500.12619/99607
dc.description Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince telif haklarına uygun olan nüsha açık akademik arşiv sistemine açık erişim olarak yüklenmiştir.
dc.description.abstract Companies must determine the replacement time of machine parts correctly since it affects their production costs and efficiencies. In this respect, the objective is to determine the most appropriate replacement time to minimize cost per unit. This study proposes developing a hybrid Artificial Neural Network (ANN)-Genetic Algorithm (GA) model to predict replacement time without using a cost model. At first, a replacement cost model is developed to calculate replacement times to use in training the neural network. Nevertheless, the cost model needs complex mathematical calculations. C: A is used instead of the cost model to determine replacement time and thus, to achieve fast learning for the neural network. The hybrid ANN-GA model was applied to predict replacement time of bladder in tire manufacturing. Furthermore, ANN and GA models, which were developed to increase the prediction accuracy of the hybrid model, were used. The hybrid ANN-GA model presented a better solution according to the performance statistics than the other ANN and GA models. The values indicate that the hybrid model is in good agreement with the cost model. Thus, it is recommended that the hybrid model be used instead of the cost model. (C) 2022 Sharif University of Technology. All rights reserved.
dc.language English
dc.language.iso eng
dc.publisher SHARIF UNIV TECHNOLOGY
dc.relation.isversionof 10.24200/sci.2020.52828.2902
dc.subject Engineering
dc.subject Replacement time
dc.subject Replacement cost model
dc.subject Artificial neural network
dc.subject Genetic algorithm
dc.subject Hybrid ANN-GA model
dc.title Determining optimal machine part replacement time using a hybrid ANN-GA model
dc.type Article
dc.identifier.volume 29
dc.identifier.startpage 771
dc.identifier.endpage 782
dc.relation.journal SCIENTIA IRANICA
dc.identifier.issue 2
dc.identifier.doi 10.24200/sci.2020.52828.2902
dc.contributor.author Gokler, S. H.
dc.contributor.author Boran, S.
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rights.openaccessdesignations gold


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record