Açık Akademik Arşiv Sistemi

IoT data analytics architecture for smart healthcare using RFID and WSN

Show simple item record

dc.contributor.authors Ogur, Nur Banu; Al-Hubaishi, Mohammed; Ceken, Celal
dc.date.accessioned 2023-01-24T12:08:44Z
dc.date.available 2023-01-24T12:08:44Z
dc.date.issued 2022
dc.identifier.issn 1225-6463
dc.identifier.uri http://dx.doi.org/10.4218/etrij.2020-0036
dc.identifier.uri https://hdl.handle.net/20.500.12619/99584
dc.description Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince telif haklarına uygun olan nüsha açık akademik arşiv sistemine açık erişim olarak yüklenmiştir.
dc.description.abstract The importance of big data analytics has become apparent with the increasing volume of data on the Internet. The amount of data will increase even more with the widespread use of Internet of Things (IoT). One of the most important application areas of the IoT is healthcare. This study introduces new real-time data analytics architecture for an IoT-based smart healthcare system, which consists of a wireless sensor network and a radio-frequency identification technology in a vertical domain. The proposed platform also includes high-performance data analytics tools, such as Kafka, Spark, MongoDB, and NodeJS, in a horizontal domain. To investigate the performance of the system developed, a diagnosis of Wolff-Parkinson-White syndrome by logistic regression is discussed. The results show that the proposed IoT data analytics system can successfully process health data in real-time with an accuracy rate of 95% and it can handle large volumes of data. The developed system also communicates with a riverbed modeler using Transmission Control Protocol (TCP) to model any IoT-enabling technology. Therefore, the proposed architecture can be used as a time-saving experimental environment for any IoT-based system.
dc.language English
dc.language.iso eng
dc.publisher WILEY
dc.relation.isversionof 10.4218/etrij.2020-0036
dc.subject Engineering
dc.subject Telecommunications
dc.subject big data analytics
dc.subject internet of things
dc.subject IoT
dc.subject logistic regression
dc.subject machine learning
dc.subject RFID
dc.title IoT data analytics architecture for smart healthcare using RFID and WSN
dc.type Article
dc.contributor.authorID Al-Hubaishi, Mohammed Hussein/0000-0002-9940-3592
dc.contributor.authorID ogur, nurbanu/0000-0001-6768-2091
dc.identifier.volume 44
dc.identifier.startpage 135
dc.identifier.endpage 146
dc.relation.journal ETRI JOURNAL
dc.identifier.issue 1
dc.identifier.doi 10.4218/etrij.2020-0036
dc.identifier.eissn 2233-7326
dc.contributor.author Ogur, Nur Banu
dc.contributor.author Al-Hubaishi, Mohammed
dc.contributor.author Ceken, Celal
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rights.openaccessdesignations gold


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record