dc.contributor.authors |
Ogur, Nur Banu; Al-Hubaishi, Mohammed; Ceken, Celal |
|
dc.date.accessioned |
2023-01-24T12:08:44Z |
|
dc.date.available |
2023-01-24T12:08:44Z |
|
dc.date.issued |
2022 |
|
dc.identifier.issn |
1225-6463 |
|
dc.identifier.uri |
http://dx.doi.org/10.4218/etrij.2020-0036 |
|
dc.identifier.uri |
https://hdl.handle.net/20.500.12619/99584 |
|
dc.description |
Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince telif haklarına uygun olan nüsha açık akademik arşiv sistemine açık erişim olarak yüklenmiştir. |
|
dc.description.abstract |
The importance of big data analytics has become apparent with the increasing volume of data on the Internet. The amount of data will increase even more with the widespread use of Internet of Things (IoT). One of the most important application areas of the IoT is healthcare. This study introduces new real-time data analytics architecture for an IoT-based smart healthcare system, which consists of a wireless sensor network and a radio-frequency identification technology in a vertical domain. The proposed platform also includes high-performance data analytics tools, such as Kafka, Spark, MongoDB, and NodeJS, in a horizontal domain. To investigate the performance of the system developed, a diagnosis of Wolff-Parkinson-White syndrome by logistic regression is discussed. The results show that the proposed IoT data analytics system can successfully process health data in real-time with an accuracy rate of 95% and it can handle large volumes of data. The developed system also communicates with a riverbed modeler using Transmission Control Protocol (TCP) to model any IoT-enabling technology. Therefore, the proposed architecture can be used as a time-saving experimental environment for any IoT-based system. |
|
dc.language |
English |
|
dc.language.iso |
eng |
|
dc.publisher |
WILEY |
|
dc.relation.isversionof |
10.4218/etrij.2020-0036 |
|
dc.subject |
Engineering |
|
dc.subject |
Telecommunications |
|
dc.subject |
big data analytics |
|
dc.subject |
internet of things |
|
dc.subject |
IoT |
|
dc.subject |
logistic regression |
|
dc.subject |
machine learning |
|
dc.subject |
RFID |
|
dc.title |
IoT data analytics architecture for smart healthcare using RFID and WSN |
|
dc.type |
Article |
|
dc.contributor.authorID |
Al-Hubaishi, Mohammed Hussein/0000-0002-9940-3592 |
|
dc.contributor.authorID |
ogur, nurbanu/0000-0001-6768-2091 |
|
dc.identifier.volume |
44 |
|
dc.identifier.startpage |
135 |
|
dc.identifier.endpage |
146 |
|
dc.relation.journal |
ETRI JOURNAL |
|
dc.identifier.issue |
1 |
|
dc.identifier.doi |
10.4218/etrij.2020-0036 |
|
dc.identifier.eissn |
2233-7326 |
|
dc.contributor.author |
Ogur, Nur Banu |
|
dc.contributor.author |
Al-Hubaishi, Mohammed |
|
dc.contributor.author |
Ceken, Celal |
|
dc.relation.publicationcategory |
Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı |
|
dc.rights.openaccessdesignations |
gold |
|