Anahtar Kelimeler : Sonlu elemanlar yöntemi, termal bariyer kaplamalar, termal şok, termal gerilimler Bu çalışmada, sonlu elemanlar yöntemi kullanılarak çeşitli seramik kaplama-metal altlık malzeme kombinasyonları için termal şok analizleri yapılmıştır. Kaplama sisteminde soğutma ile oluşan termal gerilimlerin işareti ve büyüklüğü üzerine termal genleşme katsayısı, termal iletkenlik katsayısı ve elastisite modülü gibi malzeme özelliklerinin, kaplama kalınlığının, ara kaplama kullanımının ve farklı seramik kaplama-metal altlık malzeme kombinasyonlarının etkileri incelenmiştir. Bu sonlu elemanlar yöntemi çalışmasında, malzeme özelliklerinin birbirine yakın olması nedeniyle kaplama malzemesi olarak zirkonya (Z1O2) ve altlık malzeme olarak ise Küresel Grafitli Dökme Demir (KGDD) kullanılmıştır. Z1O2 kaplama kalınlıkları 0,2 mm, 0,4 mm ve 0,8 mm olarak seçilmiştir. Altlık malzeme kalınlığı 4 mm ve modelin boyu 24 mm olarak sabit tutulmuştur. Malzeme özelliklerinin termal gerilimlerin işareti ve büyüklüğü üzerine etkilerinin incelenebilmesi amacıyla her analizde yalnızca biri olmak üzere Kzrce, azı02 ve EZ102 değerlerinde değişimler yapılmıştır. Bu tür sistemlerde ara kaplama kullanımının etkinliğinin araştırılması amacıyla NiAl ara kaplama uygulaması da denenmiştir. Bütün bunlardan başka Z1O2- %12Si+Al ve AI2O3-KGDD kaplama sistemleri için de termal şok analizleri gerçekleştirilmiştir. Yapılan analizler neticesinde, malzeme özelliklerinin termal gerilimler üzerinde önemli etkisinin olduğu belirlenmiştir. Ayrıca kaplama kalınlığının azaltılmasıyla birlikte, kaplanmış sistemdeki termal şok hasarının da azaldığı görülmüştür. Kaplama ile altlık malzeme arasında bir ara kaplamanın varlığı, termal gerilimlerin azaltılmasında önemli bir etkiye sahip olmuştur. Bundan başka altlık malzemenin termal genleşme katsayısı ve elastisite modülü değerleri kaplamanınkine uygun hale getirildiğinde termal gerilimlerin büyük ölçüde azaldığı tespit edilmiştir. XI
Keywords : Finite element technique, thermal shock, thermal stresses, thermal barrier coatings Surface preparation techniques such as, plasma spraying, physical vapour deposition (PVD), chemical vapour deposition (CVD), detonation gun, flame spraying, have been used to make convenient material combinations in usage of high technological requirements. Coatings are used for many engineering applications in order to improve the surface properties of components or structures or to protect them against environmental degradation. Typical examples in high temperature technologies are coatings against thermal degradation, high temperature corrosion, erosion and wear. High temperature coatings are used for two main functions, either to protect a base metal against corrosion or erosion or to minimize wear. A third function is to reduce the base metal temperature in the case of thermal barrier coatings; however, resistance to hot corrosion and oxidation is again mandatory. Moreover, in case of gas turbine engines thermal barrier coats reduce substrate air cooling requirement. Because of its specific task the coating material differs from the substrate material in chemical composition, structure and physical as well as mechanical properties. Thus for high temperature applications good chemical and mechanical compatibility between the coating and the substrate material is a main design objective. However, it has to be taken into account that at high temperatures and after sufficient long service times changes occur because of aging, interdiffüsion or even environmental effects which additionally may modify specific properties. XilIt is well known that metallic surfaces in aggressive environments (oxidation, carburization, nitration, sulphidation, attack by molten metals, etc.) and at elevated temperatures are usually unstable. Whereas ceramic coatings are thermodynamically stable. On the other hand they are easily damaged under the action of thermomechanical stresses. This is due to the mismatch of their thermal expansion coefficients with those of metallic substrates. Finite element technique is a computerized technique for engineering analysis. This technique is widely used for solutions to design challenges in the aerospace, automotive, power, consumer machinery, biomechanics and electrical/electronics industries. To establish any finite element analysis, firstly, a model with boundary conditions and constraints have to be designed. After choosing the appropriate element type, the model is divided into elements and the analysis type indecided and excuted. In transient analysis finite element technique obtains the nodal displacements at any time increment from which the stresses are calculated. In this finite element study, thermal shock analyses were carried out using Z1O2 and AI2O3 ceramic coating, NiAl bond coating, spreodial cast iron and %12Si+Al piston valve substrate materials. For Z1O2 coatings, 0.2 mm, 0.4 mm and 0.8 mm coating thickness were modelled. For Zr02-%12Si+Al and A1203-GG