Abstract:
Impact problems are usually interesting for the military, either for defensive or offensive purposes to develop armor or ammunition. Recently, daily applications request safety of the products, therefore, it is essential to understand the material behavior under intense short duration or impact loadings. Metallic armor is extremely heavy and would not be popular for personal protection. However, reinforced fiber composites have been used for these purposes. In present study, carbon-fiber-reinforced aluminum honeycomb, aramid and plywood materials were used for armor matrix layers. For determining the capability of sequencing the composite layers, ballistic tests for all six combination of sequenced sandwich panels for three different composites were evaluated at a speed of 700 m/s using a 36 caliber one-cored projectile. To obtain cheaper and reliable solutions for further studies of various test conditions, computer aided ballistic simulations were analyzed. To make sufficient correlations, the test results and the computer simulations were compared to each other. Finally, plywood used between the aramid and the carbon-fiber-reinforced aluminum honeycomb sandwich panel has shown the most accurate and the reliable results of the tests and the computer simulations.