Açık Akademik Arşiv Sistemi

Quantum codes from codes over the ring F-q + alpha F-q

Show simple item record

dc.contributor.authors Guzeltepe, M; Sari, M;
dc.date.accessioned 2020-02-25T07:00:15Z
dc.date.available 2020-02-25T07:00:15Z
dc.date.issued 2019
dc.identifier.citation Guzeltepe, M; Sari, M; (2019). Quantum codes from codes over the ring F-q + alpha F-q. QUANTUM INFORMATION PROCESSING, 18, -
dc.identifier.issn 1570-0755
dc.identifier.uri https://doi.org/10.1007/s11128-019-2476-2
dc.identifier.uri https://hdl.handle.net/20.500.12619/45404
dc.description.abstract In this paper, we aim to obtain quantum error correcting codes from codes over a non-local ring R-q = F-q + alpha F-q. We first define a Gray map phi from R-q(n) to F-q(2n) preserving the Hermitian orthogonality in R-q(n) to both the Euclidean and trace-symplectic orthogonality in F-q(2n). We characterize the structure of cyclic codes and their duals over R-q and derive the condition of existence for cyclic codes containing their duals over R-q. By making use of the Gray map phi, we obtain two classes of q-ary quantum codes. We also determine the structure of additive cyclic codes over R-p2 and give a condition for these codes to be self-orthogonal with respect to Hermitian inner product. By defining and making use of a new map delta, we construct a family of p-ary quantum codes.
dc.language English
dc.publisher SPRINGER
dc.subject Physics
dc.title Quantum codes from codes over the ring F-q + alpha F-q
dc.type Article
dc.identifier.volume 18
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Güzeltepe, Murat
dc.contributor.saüauthor Sarı, Mustafa
dc.relation.journal QUANTUM INFORMATION PROCESSING
dc.identifier.wos WOS:000499892200001
dc.identifier.doi 10.1007/s11128-019-2476-2
dc.identifier.eissn 1573-1332
dc.contributor.author Güzeltepe, Murat
dc.contributor.author Sarı, Mustafa


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record