dc.date.accessioned |
2020-01-13T09:08:45Z |
|
dc.date.available |
2020-01-13T09:08:45Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Ozmen, A; Mumyakmaz, B; Ebeoglu, MA; Tasaltin, C; Gurol, I; Ozturk, ZZ; Dural, D; (2016). Quantitative information extraction from gas sensor data using principal component regression. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 24, 960-946 |
|
dc.identifier.issn |
1300-0632 |
|
dc.identifier.uri |
https://hdl.handle.net/20.500.12619/2624 |
|
dc.identifier.uri |
https://doi.org/10.3906/elk-1309-96 |
|
dc.description.abstract |
Several experiments are conducted using two industrial gases (toluene and ethanol) to validate the approach. The new approach is also compared with two classic principal component regression (PCR) methods. The results show that the new approach performs better than the classic PCR approaches. |
|
dc.language |
English |
|
dc.publisher |
TUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEY |
|
dc.subject |
Engineering |
|
dc.title |
Quantitative information extraction from gas sensor data using principal component regression |
|
dc.type |
Article |
|
dc.identifier.volume |
24 |
|
dc.identifier.startpage |
946 |
|
dc.identifier.endpage |
960 |
|
dc.contributor.department |
Sakarya Üniversitesi/Bilgisayar Ve Bilişim Bilimleri Fakültesi/Yazılım Mühendisliği Bölümü |
|
dc.contributor.saüauthor |
Özmen, Ahmet |
|
dc.contributor.saüauthor |
Balta, Deniz |
|
dc.relation.journal |
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES |
|
dc.identifier.wos |
WOS:000374121500018 |
|
dc.identifier.doi |
10.3906/elk-1309-96 |
|
dc.identifier.eissn |
1303-6203 |
|
dc.contributor.author |
Özmen, Ahmet |
|
dc.contributor.author |
Bekir Mumyakmaz |
|
dc.contributor.author |
Mehmet Ali Ebeoglu |
|
dc.contributor.author |
Cihat Tasaltin |
|
dc.contributor.author |
Ilke Gurol |
|
dc.contributor.author |
Zafer Ziya Ozturk |
|
dc.contributor.author |
Balta, Deniz |
|