dc.contributor.authors |
Katubi, KM; Saqib, M; Mubashir, T; Tahir, MH; Halawa, MI; Akbar, A; Basha, B; Sulaman, M; Alrowaili, ZA; Al-Buriahi, MS |
|
dc.date.accessioned |
2024-02-23T11:45:19Z |
|
dc.date.available |
2024-02-23T11:45:19Z |
|
dc.date.issued |
2023 |
|
dc.identifier.issn |
0020-7608 |
|
dc.identifier.uri |
http://dx.doi.org/10.1002/qua.27230 |
|
dc.identifier.uri |
https://hdl.handle.net/20.500.12619/102252 |
|
dc.description |
Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince açık akademik arşiv sistemine açık erişim olarak yüklenmiştir. |
|
dc.description.abstract |
Machine learning (ML) analysis has gained huge importance among researchers for predicting multiple parameters and designing efficient donor and acceptor materials without experimentation. Data are collected from literature and subsequently used for predicting impactful properties of organic solar cells such as power conversion efficiency (PCE) and energy levels (HOMO/LUMO). Importantly, out of various tested models, hist gradient boosting (HGB) and the light gradient boosting (LGBM) regression models revealed better predictive capabilities. To achieve the prediction effectively, the selected (best) ML regression models are further tuned. For the prediction of PCE (test set), the LGBM shows the coefficient of determination (R-2) value of 0.787, which is higher than HGB (R-2 = 0.680). For the prediction of HOMO (test set), the LGBM shows R-2 value of 0.566, which is higher than HGB (R-2 = 0.563). However, for the prediction of LUMO (test set), the LGBM shows R-2 value of 0.605, which is lower than HGB (R-2 = 0.606). Among the three predicted properties, prediction ability is higher for PCE. These models help to predict the efficient acceptors in a short time and less computational cost. |
|
dc.language |
English |
|
dc.language.iso |
eng |
|
dc.publisher |
WILEY |
|
dc.relation.isversionof |
10.1002/qua.27230 |
|
dc.subject |
hist gradient boosting regression model |
|
dc.subject |
light gradient boosting regression model |
|
dc.subject |
machine learning |
|
dc.subject |
organic acceptors |
|
dc.subject |
RDkit |
|
dc.title |
Nanofiller-Based Novel Hybrid Composite Membranes for High-Capacity Lithium-Sulfur Batteries |
|
dc.type |
Article |
|
dc.identifier.volume |
123 |
|
dc.relation.journal |
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY |
|
dc.identifier.issue |
23 |
|
dc.identifier.doi |
10.1002/qua.27230 |
|
dc.identifier.eissn |
1097-461X |
|
dc.contributor.author |
Katubi, Khadijah Mohammedsaleh |
|
dc.contributor.author |
Saqib, Muhammad |
|
dc.contributor.author |
Mubashir, Tayyaba |
|
dc.contributor.author |
Tahir, Mudassir Hussain |
|
dc.contributor.author |
Halawa, Mohamed Ibrahim |
|
dc.contributor.author |
Akbar, Alveena |
|
dc.contributor.author |
Basha, Beriham |
|
dc.contributor.author |
Sulaman, Muhammad |
|
dc.contributor.author |
Alrowaili, Z. A. |
|
dc.contributor.author |
Al-Buriahi, M. S. |
|
dc.relation.publicationcategory |
Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı |
|
dc.rights.openaccessdesignations |
Bronze |
|