dc.contributor.authors |
Çavusoglu, Ü; Akgun, D; Hizal, S |
|
dc.date.accessioned |
2024-02-23T11:45:13Z |
|
dc.date.available |
2024-02-23T11:45:13Z |
|
dc.date.issued |
2023 |
|
dc.identifier.issn |
2193-567X |
|
dc.identifier.uri |
http://dx.doi.org/10.1007/s13369-023-08092-1 |
|
dc.identifier.uri |
https://hdl.handle.net/20.500.12619/102193 |
|
dc.description |
Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince açık akademik arşiv sistemine açık erişim olarak yüklenmiştir. |
|
dc.description.abstract |
Preventing attackers from interrupting or totally stopping critical services in cloud systems is a vital and challenging task. Today, machine learning-based algorithms and models are widely used, especially for the intelligent detection of zero-day attacks. Recently, deep learning methods that provide automatic feature extraction are designed to detect attacks automatically. In this study, we constructed a new deep learning model based on transfer learning for detecting and protecting cloud systems from malicious attacks. The developed deep transfer learning-based IDS converts network traffic into 2D preprocessed feature maps.Then the feature maps are processed with the transferred and fine-tuned convolutional layers of the deep learning model before the dense layer for detection and classification of traffic data. The results computed using the NSL-KDD test dataset reveal that the developed models achieve 89.74% multiclass and 92.58% binary classification accuracy. We performed another evaluation using only 20% of the training dataset as test data, and 80% for training. In this case, the model achieved 99.83% and 99.85% multiclass and binary classification accuracy, respectively. |
|
dc.language |
English |
|
dc.language.iso |
eng |
|
dc.publisher |
SPRINGER HEIDELBERG |
|
dc.relation.isversionof |
10.1007/s13369-023-08092-1 |
|
dc.subject |
Network security |
|
dc.subject |
Intrusion detection system |
|
dc.subject |
Deep learning |
|
dc.subject |
Transfer learning |
|
dc.subject |
VGG16 |
|
dc.title |
A Novel Cyber Security Model Using Deep Transfer Learning |
|
dc.type |
Article |
|
dc.type |
Early Access |
|
dc.relation.journal |
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING |
|
dc.identifier.doi |
10.1007/s13369-023-08092-1 |
|
dc.identifier.eissn |
2191-4281 |
|
dc.contributor.author |
Cavusoglu, Unal |
|
dc.contributor.author |
Akgun, Devrim |
|
dc.contributor.author |
Hizal, Selman |
|
dc.relation.publicationcategory |
Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı |
|
dc.rights.openaccessdesignations |
Green Submitted |
|