Açık Akademik Arşiv Sistemi

Solutions of localized induction equation associated with involute-evolute curve pair

Show simple item record

dc.contributor.authors Eren, K; Myrzakulova, Z; Ersoy, S; Myrzakulov, R
dc.date.accessioned 2024-02-23T11:45:09Z
dc.date.available 2024-02-23T11:45:09Z
dc.date.issued 2023
dc.identifier.issn 1432-7643
dc.identifier.uri http://dx.doi.org/10.1007/s00500-023-09375-3
dc.identifier.uri https://hdl.handle.net/20.500.12619/102143
dc.description Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince açık akademik arşiv sistemine açık erişim olarak yüklenmiştir.
dc.description.abstract Involute-evolute curve pairs enable us to forecast their behaviors in various situations because of their well-defined mathematical characteristics. A mathematical surface connected to the localized induction equation (LIE) is called the Hasimoto surface. The research gap in this context is the lack of a comprehensive understanding of the surfaces' differential geometric properties and behaviors in relation to solutions of the LIE for the involute-evolute curve pair. In this regard, we provide information on these surfaces' behavior by deriving them associated with involute-evolute curve pairs and calculating their certain curvatures. Notably, we establish a link between the curvatures of these curve pairs and the Gaussian and mean curvatures of Hasimoto surfaces. Our research further identifies the precise conditions under which the parameter curves of these surfaces assume the roles of geodesics, asymptotics, or lines of curvature on the surface. Finally, we provide some examples of LIEs' hierarchy.
dc.language English
dc.language.iso eng
dc.publisher SPRINGER
dc.relation.isversionof 10.1007/s00500-023-09375-3
dc.subject Methods of classical differential geometry
dc.subject Curves
dc.subject Surfaces
dc.subject Curvatures
dc.subject Vortex filaments
dc.subject Hasimoto surfaces
dc.title Solutions of localized induction equation associated with involute-evolute curve pair
dc.type Article
dc.type Early Access
dc.relation.journal SOFT COMPUTING
dc.identifier.doi 10.1007/s00500-023-09375-3
dc.identifier.eissn 1433-7479
dc.contributor.author Eren, Kemal
dc.contributor.author Myrzakulova, Zhaidary
dc.contributor.author Ersoy, Soley
dc.contributor.author Myrzakulov, Ratbay
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rights.openaccessdesignations Green Submitted


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record