Günümüz dünyasında alüminyum metalinin önemi tartışılmaz boyutlara ulaşmıştır. Kaplar, levhalar, profiller ve levha kaplamaların üretimleri için alüminyum kullanımı, çevre kirleticiliği, hafriyat, binalar ve diğer yapılar için önemli bir malzemesidir. Son yillarda, alüminyum ekstrüzyon makinelerinin imalatı, alüminyum metalin ucuz ve dayanıklı işlemleri için başarılı bir şekilde kullanılmasını sağlamıştır. Bu tez, laboratuvar ortamında kullanılan bir alüminyum ekstrüzyon makinesinin imalat sürecini ve performansını incelemektedir. Laboratuvar tipi ekstrüzyon makinesi, küçük ölçekli çalışmalar için tasarlanmıştır ve prototiplerin veya örneklerin üretilmesinde kullanılmaktadır. Ekstrüzyon, imalat endüstrisinde sabit bir kesit profiline sahip nesneler oluşturmak için kullanılan bir işlemdir. Ekstrüzyon makinalarının kalıp tasarımı, ekstrüde edilmiş ürünün nihai şeklini ve kalitesini belirlediği için ekstrüzyon işleminin kritik bir yönüdür. Bir ekstrüzyon kalıbının tasarımı, ekstrüde edilen malzeme, istenen enine kesit profili ve ekstrüzyon işleminin hızı ve sıcaklığı dahil olmak üzere çeşitli faktörleri içerir. Kalıp tasarımı, ortaya çıkan ürünün tekdüze kalitede olmasını sağlamak için ekstrüde edilen malzemenin viskozitesi ve esnekliği gibi özelliklerini de dikkate almalıdır. Bilgisayar destekli tasarım (CAD) yazılımındaki gelişmeler, ekstrüzyon kalıplarını tasarlamayı ve optimize etmeyi kolaylaştırarak üreticilerin yüksek kaliteli ekstrüde ürünleri daha düşük maliyetle üretmesine olanak tanıdı. Bu makinanın en önemli bölümlerinden olan kalıp tasarımı CATIA programı kullanılarak yapılmıştır ve CES Selector yazılımı için yukarıda belirlenen temel kriterler, literatür çalışmalarından ve yazılım kullanılarak minimum ve maksimum değerleri belirlenmiş ve yazılıma girilmiştir. Yazılım ve araştırmaların gösterdiği en uygun kalıp malzemesi H13 sıcak iş çelik malzemesi olmuştur. Bu çalışmada kullanılacak olan Al ve Mg alaşımı, elektrikli direnç fırınlarında 730 C sıcaklıkta ergitme işlemleri yapılarak kokil kalıplara döküm uygulamaları gerçekleştirilmiştir. Döküm formunu alan metal alaşımları, talaşlı imalat yapılarak numune üretilmiştir.Yapılan bu çalışmalar sayesinde masaüstü boyutlarında ekstrüzyon makinesi ve kalıplarında numune çalışmalarının yapılmasını ve sonuçlarının hızlı bir şekilde elde edilmesine kolaylık sağlanmış olacaktır. Bu tez, ekstrüzyon makinesi imalatıyla ilgilenen akademisyenlere, mühendislere ve endüstri profesyonellerine değerli bilgiler sunmaktadır. Ekstrüzyon makinesi tasarımı ve üretim süreçlerindeki iyileştirmeler, endüstriyel uygulamalarda daha etkili ve verimli üretim sağlama potansiyeline sahiptir.
Production can be defined as transforming the substances found in nature into products with the desired properties and shapes, it is also generally referred to as manufacturing methods. Production methods including many different methods include casting, welding, plastic forming, powder metallurgy, machining and rapid prototyping. Exposing a solid object to stresses exceeding the yield strength with the help of tools called molds without deteriorating the crystal structure and without undergoing volumetric changes is called plastic deformation or plastic shaping. The most widely used method in plastic forming is the extrusion method. Extrusion is divided into two. Direct extrusion is an extrusion method in which a material is shaped by passing it directly through a single die. In this method, the material is placed in the hopper of an extruder or machine. Then the material is pushed into the mold with the help of a screw or plunger. The material shaped as it passes through the die exits an exit hole with a predetermined cross-sectional shape. Direct extrusion is often used for machining metal alloys, plastics or ceramics. The material is melted or softened in the heating zone of the extruder or machine and then cooled as it passes through the extrusion die. Direct extrusion is ideal for the production of high strength and complex shapes. Indirect extrusion is an extrusion method in which the material is shaped with the help of an inside die. In this method, the material is placed inside a tube or tubular mold. Next, the material is pushed from the inside by a plunger or screw. The material takes the determined shape by passing through the holes of the mold and comes out of the mold. Indirect extrusion is often used in the processing of soft materials, especially plastics and elastomers. The material is shaped and cooled as a result of the heating or softening process in the mold. This method is suitable for the manufacture of products with simple geometries. The laboratory extruder is becoming an important tool in the facilities made in the laboratory environment by offering various advantages. In this way, new products and materials can be produced for trial purposes, designs can be optimized and production processes can be improved, and it is an important tool in materials and product development studies and is used for material properties improvement, characterization of new materials and analysis of product performance. In this way, studies conducted in the laboratory environment provide information and data for industrial applications. This thesis focuses on the production process and performance evaluation of a laboratory type extruder made by direct extrusion, one of the aluminum production methods. The laboratory extruder is designed for small-scale operations and is used to produce prototypes or samples.The objective of this thesis is to provide a detailed examination of the design, manufacturing, and performance of the laboratory type xxiv aluminum extrusion machine. Firstly, an overview of the basic principles of the extrusion process and aluminum extrusion technology will be presented. Subsequently, the design requirements for the laboratory type extrusion machine will be determined, and a design process will be followed. During the design process, the components, dimensions, and materials of the laboratory type extrusion machine will be determined. The main components of the machine will include the extrusion heating system andmold system. The design process will ensure the functionality, usability, and safety of the machine. During the manufacturing process, a prototype of the designed laboratory extruder will be produced. Mold material selection and sample production will be done. The performance evaluation will include the extrusion capacity, temperature control, production speed, and product quality of the machine. Other important factors such as safety measures and operational convenience will also be taken into consideration. Extrusion is a process used in the manufacturing industry to create objects with a fixed cross section profile. Mold design of extruders is a critical aspect of the extrusion process as it determines the final shape and quality of the extruded product. The design of an extrusion die involves several factors, including the material being extruded, the desired cross-section profile, and the speed and temperature of the extrusion process. Mold design must also take into account properties such as viscosity and flexibility of the extruded material to ensure the resulting product is of uniform quality. Advances in computer-aided design (CAD) software have made it easier to design and optimize extrusion dies, allowing manufacturers to produce high-quality extruded products at a lower cost. Cost is also an important factor in material selection for extrusion dies. Hot work tool steels with a tempering temperature of about 600°C (such as H13) are the primary materials used for extrusion dies and in direct contact with the workpiece. These materials are suitable because they provide a good combination of mechanical properties (wear resistance and strength) at elevated temperatures. Hot work tool steels can be used down to about 50°C below the tempering point, allowing them to perform properly in extrusion of a wide variety of materials such as aluminum, magnesium and zinc alloys. For extrusion materials with higher melting points, such as copper, the surface temperature of the tool in direct contact with the workpiece can reach 700°C and above, which is well above the softening temperature of hot work tool steel. Depending on the process and expected tool life, alternative materials such as superalloys and hot work tool steels with higher molybdenum and tungsten can be used. The mold design, which is one of the most important parts of this machine, was made using the CATIA program and the basic criteria for CES Selector software were determined from the literature studies and the minimum and maximum values were determined and entered into the software. The most suitable mold material shown by software and research was H13 hot work steel material. Al and Mg alloys to be used in this study were melted in electric resistance furnaces at a temperature of 730 C, and casting applications were carried out in permanent molds. Metal alloys that take the form of casting, samples are produced by machining. Thanks to these studies, it will be easier to carry out sample studies on desktop-sized extrusion machines and molds and to obtain the results quickly. xxv This thesis provides valuable information to academics, engineers and industry professionals interested in extruder manufacturing. Improvements in extruder design and production processes have the potential to provide more effective and efficient production in industrial applications. Also, in future studies, Sakarya University Metallurgical and Materials Engineering department will provide an extruder machine to focus on design optimization, material selection, more advanced control systems and integration of industry 4.0 technologies. further research will be provided