Abstract:
In this study, nickel plated silicon powders were produced using an electroless deposition process. The nickel content on the surface of silicon powders was changed by using different concentrations of NiCl2 in the plating bath. The surface morphology of the produced Ni plated composite powders was characterized using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) was used to determine the elemental surface composition of the composites. X-ray diffraction (XRD) analysis was performed to investigate the structure of the nickel plated silicon powders. Electrochemical cycling test of the nickel plated silicon electrodes were performed at a constant current of 100 mA/g in CR2016 test cells. In order to investigate electrochemical reactions of the nickel plated silicon powders with electrolyte, cyclic voltammetry test was performed at a scan rate of 0.1 mV/s. Among the used concentrations, the nickel plated silicon electrode produced using 40 g/L NiCl2 had a 246 mAh/g discharge capacity after 30 cycles. (C) 2014 Elsevier B.V. All rights reserved.