Abstract:
Solid oxide fuel cell (SOFC) is a very efficient and clean source of energy. The glass and glass-ceramics are the most suitable and compatible sealing materials for SOFC. The crystallization kinetics of glass sealants is an essential parameter to check the suitability of glass as a sealant. In this study, the crystallization behavior of a novel sealing glass developed from the volcanic rock basalt suitable as an SOFC sealant is investigated via differential thermal analysis using the Kissinger kinetic model with several different heating rates. Development of crystalline phases on thermal treatments of the glass at various temperatures has been followed by X-ray diffraction. Augite and diopside are the primary crystalline phases in crystallized glass-ceramic seals. The results show that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.