Açık Akademik Arşiv Sistemi

Transport, microstructure and mechanical properties of Au diffusion-doped Bi-2223 superconductors

Show simple item record

dc.contributor.authors Nursoy, M; Yilmazlar, M; Terzioglu, C; Belenli, I;
dc.date.accessioned 2020-02-24T13:29:06Z
dc.date.available 2020-02-24T13:29:06Z
dc.date.issued 2008
dc.identifier.citation Nursoy, M; Yilmazlar, M; Terzioglu, C; Belenli, I; (2008). Transport, microstructure and mechanical properties of Au diffusion-doped Bi-2223 superconductors. JOURNAL OF ALLOYS AND COMPOUNDS, 459, 406-399
dc.identifier.issn 0925-8388
dc.identifier.uri https://doi.org/10.1016/j.jallcom.2007.04.282
dc.identifier.uri https://hdl.handle.net/20.500.12619/44204
dc.description.abstract We have investigated the effect of the Au-diffusion on the mechanical and transport properties of the (Bi,Pb)(2)Sr(2)Ca(2)Cu(3)Oy (Bi-2223) superconducting samples with different annealing times of 10, 20 and 50 It. The samples are prepared by the conventional solid-state reaction method in the polycrystalline bulk form. Doping of Bi-2223 was carried out by means of Au diffusion during sintering from an evaporated An film on pellets. The experimental works in this study consist of dc electrical resistivity and critical current density measurements for electrical and superconducting properties, microhardness measurements for mechanical properties, powder X-ray diffraction (XRD) for phase analyses (phase ratio) and lattice parameters, and scanning electron microscopy (SEM) for microstructure examination. These measurements showed that Au-doping, in comparison with the undoped samples, increased the critical transition temperature, critical current density and enhanced formation of high-T-c, phase. Additionally, microhardness and grain size were also improved with increasing amount of diffusion. Moreover, the diffusion-annealing time decreased the number and size of voids and increased the transition temperature. The experimental results of microhardness measurements were analyzed using the Kick's law, modified proportional specimen resistance (MPSR) model and the Hays-Kendall (HK) approach. Kick's law did not give useful knowledge of the origin of the indentation size effect. It was observed that the load independent microhardness values were determined based on the MPSR and HK models, and found to be similar with each other. The possible reasons for the observed enhancement in transport and mechanical properties due to An diffusion are discussed. (C) 2007 Elsevier B.V. All rights reserved.
dc.language English
dc.publisher ELSEVIER SCIENCE SA
dc.subject Metallurgy & Metallurgical Engineering
dc.title Transport, microstructure and mechanical properties of Au diffusion-doped Bi-2223 superconductors
dc.type Article
dc.identifier.volume 459
dc.identifier.startpage 399
dc.identifier.endpage 406
dc.contributor.department Sakarya Üniversitesi/Eğitim Fakültesi/Matematik Ve Fen Bilimleri Eğitimi Bölümü
dc.contributor.saüauthor Yılmazlar, Mustafa
dc.relation.journal JOURNAL OF ALLOYS AND COMPOUNDS
dc.identifier.wos WOS:000257006300076
dc.identifier.doi 10.1016/j.jallcom.2007.04.282
dc.contributor.author Yılmazlar, Mustafa


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record