Çok kriterli karar verme problemi, çağımız yöneticilerinin sıklıkla başvurmuş olduğu yöntemlerden birisidir. Verilerin belirsiz ya da eksik olması durumunda, mevcut olan çok kriterli karar verme yöntemleri yetersiz kalırken, önermiş olduğumuz kaba küme tabanlı çok kriterli karar verme algoritması, bu eksikliği gidermede en büyük yardımcı olarak karşımıza çıkmaktadır. Bununla birlikte, hızla artan veri trafiğinde, mevcut verilerin verimli bir şekilde kullanılması da beraberinde önemli bir durumu ortaya çıkartmaktadır. 1982 yılında ilk olarak Pawlak[1] tarafından önerilen kaba küme kavramı, büyük veri tabanlarını kullanarak gerekli olan bilginin keşfini sağlayan önemli bir araç olarak kullanılmaktadır. Kaba küme kavramı, çok kriterli karar verme problemlerinde kullanılmak üzere, kesin olmayan yapıların analizi için bulanık mantık yaklaşımından türetilmiştir. Kaba küme teorisi, kural indirgeme ve sınıflandırma yaklaşım özellikleri ile büyük verilerin analiz işleminin yanı sıra çok kriterli karar verme problemlerinde de kullanılabilmektedir. Kaba küme teorisi bulanık küme teorisinin bir alt kolu olarak geliştirilmiştir. Eksik, belirsiz verilerin değerlendirilmesi sürecinde, alt ve üst yaklaşımlar kullanılarak, veriler analiz edilmektedir. Bulanık kümeler gibi kesin sınırlamaları içermeyen bir yapıya sahiptir. Eksik bilgi analizi, bilgi tabanı indirgemesi yöntemleri kullanılarak, verilerdeki belirsizlik en aza indirgenmeye çalışılmaktadır. Tutarsız, eksik bilgi içeren veri yapılarından kural çıkarımı ve sınıflandırma konusunda kaba küme teorisi ilerleyen zamanlarda daha fazla tercih edilecek bir yöntem olarak çıkabilecektir. Bu çalışmada kaba kümeleme teorisine ait temel kavramlar kaba küme tabanlı bilgi keşfi ve kaba küme kavramı dikkate alınarak geliştirilen algoritma ile birlikte, çok kriterli karar verme probleminin çözümüne yönelik algoritma geliştirilmiştir ve diğer ÇKKV algoritmaları ile karşılaştırılmıştır. Anahtar kelimeler:Kaba Küme Teorisi, Çok Kriterli Karar Verme Entropi
The multi-criteria decision-making problem is one of the methods that preffered and applied by the managers. Multi criteria decision making data set may include the uncertain or incomplete data, in this situation, decision is getting difficult and impossible, the suggested rough set based multi criteria decision making algorithm can able to solve this manner problem. However, in the rapidly increasing data traffic, the efficient use of existing data also brings about an important situation. The rough set concept firstly proposed by Pawlak in 1982[1] that is used as an important tool for the discovery of the necessary information by using large databases. In the case of multi-criteria decision-making problems, the concept of rough set theory is derived from the fuzzy logic approach to perform the analysis of uncertain structures. The rough set theory also has the property of being able to be used in multi-criteria decision-making problems with the rules of rule reduction and classification during the analysis of large data. Rough set theory has a structure that does not contain definite limitations, such as fuzzy sets. Therefore, the rough set approach can able to analysis of the incomplete, inadequate and ambiguous information suitable for data analysis, uses incomplete information analysis, knowledge base reduction methods during this process. Rough set theory can be used as a natural method that deals with inconsistent and incomplete information, which is the basic problem of rule extraction and classification. In this study, the basic concepts of rough set theory is given. The algorithm for solving multi-criteria decision making has been developed by considering the rough set based knowledge discovery and rough set concept. Keywords: Rough Set Theory, Multi Criteria Decision Making Entropy