Açık Akademik Arşiv Sistemi

Anomaly based detection of DDoS attack using discrete transform and machine learning techniques = Ayrık dönüşüm ve makıne öğrenme teknıklerı kullanılarak DDoS saldırısının anomalı tespıt edılmesı

Show simple item record

dc.contributor.advisor Doçent Doktor Seçkin Arı
dc.date.accessioned 2021-03-16T08:07:30Z
dc.date.available 2021-03-16T08:07:30Z
dc.date.issued 2018
dc.identifier.citation Salım, Mohammed S M. (2018). Anomaly based detection of DDoS attack using discrete transform and machine learning techniques = Ayrık dönüşüm ve makıne öğrenme teknıklerı kullanılarak DDoS saldırısının anomalı tespıt edılmesı. (Yayınlanmamış Yüksek Lisans Tezi).Sakarya Üniversitesi Sosyal Bilimler Enstitüsü, Sakarya.
dc.identifier.uri https://hdl.handle.net/20.500.12619/79229
dc.description 06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.
dc.description.abstract Dağıtılmış Hizmet Reddi (DDoS) saldırıları, internetteki herhangi bir çevrimiçi hizmet için ciddi bir tehdittir. Diğer geleneksel tehditlerin aksine, DDoS HTTP GET sel saldırısı, kurbanını kullanılmayan ağ trafiğiyle sel tarafından herhangi bir çevrimiçi hizmetin etkin bir şekilde inkar edilmesi için meşru HTTP istek mekanizmasını kullanabilir. Bu yazıda DDoS HTTP GET isteklerini ve yasal isteklerin davranışsal özelliklerin bir kombinasyonunu kullanarak ayırt edilmesine yönelik yeni bir anomaliye dayanan teknik tanıtılmaktadır. Seçilen ana özellikler, istenen nesnelerin çeşitliliği, istenen tüm nesneler için oranlar talep edilmesi ve istenilen nesne için en yüksek frekansla talep oranıdır. Bu parametreler önerilen sistemde etkin ayrımcılık için birlikte kullanılacak önerilen özellikler olarak seçilmiştir.
dc.description.abstract Distributed Denial of Service (DDoS) attacks is a serious threat to any online service on the internet. In contrast to other traditional threats, DDoS HTTP GET flood attack can exploit legitimate HTTP request mechanism to effectively deny any online service by flooding the victim with an overwhelming amount of unused network traffic. This paper introduces a new anomaly-based technique for discriminating between DDoS HTTP GET requests and legitimate requests using a combination of behavioural features. The main selected features are the diversity of the requested objects, requesting rates for all the requested objects, and request rate for the requested object with the most frequency. These parameters are selected as the proposed features that will be used together for effective discrimination within the proposed system
dc.language İngilizce
dc.language.iso eng
dc.publisher Sakarya Üniversitesi
dc.rights.uri info:eu-repo/semantics/openAccess
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.subject Anomali tabanlı tespiti
dc.subject HTTP GET İsteği
dc.subject davranışsal özellikler
dc.subject DDoS saldırısı,
dc.title Anomaly based detection of DDoS attack using discrete transform and machine learning techniques = Ayrık dönüşüm ve makıne öğrenme teknıklerı kullanılarak DDoS saldırısının anomalı tespıt edılmesı
dc.type masterThesis
dc.contributor.department Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar ve Bilişim Mühendisliği Anabilim Dalı, Bilgisayar Mühendisliği Bilim Dalı
dc.contributor.author Salım, Mohammed S M
dc.relation.publicationcategory TEZ


Files in this item

This item appears in the following Collection(s)

Show simple item record