Açık Akademik Arşiv Sistemi

Yapay zeka destekli laboratuvar tasarımı : çekme deneyi uygulaması

Show simple item record

dc.contributor.advisor Profesör Doktor Cemalettin Kubat
dc.date.accessioned 2021-03-03T13:47:54Z
dc.date.available 2021-03-03T13:47:54Z
dc.date.issued 2014
dc.identifier.citation Kiraz, Alper. (2014). Yapay zeka destekli laboratuvar tasarımı : çekme deneyi uygulaması. (Yayınlanmamış Doktora Tezi).Sakarya Üniversitesi Fen Bilimleri Enstitüsü ; Sakarya.
dc.identifier.uri https://hdl.handle.net/20.500.12619/76649
dc.description 06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.
dc.description.abstract Sanal laboratuvarlar, geleneksel laboratuvarların dezavantajları ve eksikliklerini ortadan kaldırarak öğrencilere istedikleri mekan ve zamanda bilişim teknolojileri ile bütünleşik bir şekilde deney ortamı sağlayan ve öğrenenlerin aktif olarak içinde bulunduğu öğrenme ortamlarıdır. Sanal laboratuvarlar, görsellik açısından uygun nitelikleri sağladığında, gerçek laboratuvarlar gibi kullanıcıların deney üzerinde parametre vb. değişikliklere giderek deney sonuçlarının değişimini gözlemleyebilme imkanı vermektedir. Bu çalışmanın amacı; bir sanal laboratuvar modeli tasarlayıp kullanıcıların platform üzerinden deneye ulaşmalarını sağlamak ve uygulamalı eğitim birimlerinde uzaktan eğitime zemin hazırlayan test ve deneylerin yapılabilirliğini göstermektir. Bu tez çalışmasında çekme testi laboratuvarında AISI (American Iron And Steel Institute) 4140 çekme testi numunesinin farklı hızlarda çekilerek elde edilen çekme kuvveti ve % uzama miktarları verilerinden yola çıkılarak, farklı çekme hızlarında % uzama miktarlarının tahmin edilebilirliği araştırılmıştır. Değişen çekme hızlarında elde edilen gerilme-uzama grafikleri incelendiğinde, lineer ve lineer olmayan iki bölümden oluştuğu gözlemlenmektedir. Farklı çekme hızlarındaki akma noktaları göz önünde bulundurularak birinci kısım, lineer regresyon modeli ile tahmin edilmiştir. Akma noktasından sonra başlayan lineer olmayan ikinci kısmın tahmin edilmesi için, dört farklı yapay sinir ağı modeli tasarlanmış ve bu modellerin tahmin performansları ölçülerek karşılaştırılmıştır. En iyi tahmin performansına sahip yapay sinir ağı modelinin ağırlıkları kullanılarak, model web ortamına aktarılmıştır. Kullanıcıların sanal ortamda deney yapabilmeleri, sanal çekme testi platformu tasarlanarak sağlanmıştır. Son olarak bu çalışmanın gelecek çalışmalara da yol göstermesi açısından, çok etmen tabanlı sistem yaklaşımı aracılığı ile geliştirilen ve önerilen kavramsal model hakkında bilgiler sunulmuştur.
dc.description.abstract Virtual laboratories are the learning medias which the users actively participate and which provides test capabilities in any desired time and place with integrated information systems by terminating disadvantages and deficiencies of conventional laboratories. Like physical laboratories, virtual laboratories when they provides convenient visual properties, allow the users to observe test results by manipulating parameters related to test. The purpose of this study is to provide to users the access to tests on the platform with the help of designing a virtual laboratory model and to proof the feasibility of these tests which provide a basis for distance education. In this study, by using the extension percentage and tension force data obtained from AISI 4140 tension test sample in various test speeds, the predictability of extension value in percentage with different test speeds was researched. When tension-extensions graphs related with test speed is inspected, they have linear and non-linear segments observed. By considering yield points with varying test speeds, first segment is predicted with the help of linear regression model. For prediction of the second segment, which is non-linear, after the yield point, four different artificial neural network models are designed and the performances of these models are compared. The optimum artificial neural network model which has the best prediction performance is carried to web media with its parameters. The virtual tension test platform is designed to provide users testing in virtual media. Finally, with the aspect of leading new studies in this subject, information about recommended cognitive model which is improved with multi agent driven system approach is presented.
dc.format.extent XII, 98 yaprak : şekil, tablo ; 30 cm.
dc.language Türkçe
dc.language.iso tur
dc.publisher Sakarya Üniversitesi
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.uri info:eu-repo/semantics/openAccess
dc.subject Uzaktan eğitim
dc.subject Sanal laboratuvarlar
dc.subject Çekme deneyi
dc.subject Yapay sinir ağları
dc.subject Çok etmenli sistemler
dc.title Yapay zeka destekli laboratuvar tasarımı : çekme deneyi uygulaması
dc.type doctoralThesis
dc.contributor.department Fen Bilimleri Enstitüsü, Endüstri Mühendisliği Anabilim Dalı, Endüstri Mühendisliği Bilim Dalı,
dc.contributor.author Kiraz, Alper
dc.relation.publicationcategory TEZ


Files in this item

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/ Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/