Açık Akademik Arşiv Sistemi

EKG işaretlerinden YSA ve korelasyon matrislerine dayalı tıkayıcı uyku apnesi teşhisi

Show simple item record

dc.contributor.advisor Profesör Doktor Abdullah Ferikoğlu
dc.date.accessioned 2021-03-03T13:38:06Z
dc.date.available 2021-03-03T13:38:06Z
dc.date.issued 2013
dc.identifier.citation Gürüler, Hüseyin. (2013). EKG işaretlerinden YSA ve korelasyon matrislerine dayalı tıkayıcı uyku apnesi teşhisi. (Yayınlanmamış Doktora Tezi).Sakarya Üniversitesi Fen Bilimleri Enstitüsü ; Sakarya.
dc.identifier.uri https://hdl.handle.net/20.500.12619/76594
dc.description 06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.
dc.description.abstract Tıkayıcı uyku apnesi (TUA) sendromu, uyku sırasında aralıklı üst solunum yolu tıkanıklıklarına neden olan, kalp ve sinir aktivitelerini etkileyerek uyku desenini bozan ciddi bir hastalıktır. Şu anda, TUA’nin tanısında polisomnografi (PSG) kullanılmaktadır. PSG, çok sayıda elektrot bağlantısına ihtiyaç duyan, genellikle gece uyku esnasında gerçekleştirilen, pahalı, zaman alıcı bir test yöntemidir. Literatürde çok sayıda bilimsel çalışma, sadece elektrokardiagram (EKG) işaretlerinin kalp hızı değişkenliği (KHD) analizine dayalı yöntemler ile TUA tanısının koyulabileceğini kabul etmektedir. Bu şekilde daha pratik, ucuz ve girişimsel olmayan bir yol ile son derece doğru sonuçlar elde edilebilen alternatif bir çözüm sunulmaktadır. Bu şekilde hastalık sınıflandırmada yüksek doğruluğa ulaşılmasına karşın hangi özellik parametrelerinin bu sınıflandırmada daha etkili olduğu ve parametre seçimi konusunda en uygun KHD analiz yöntemi için ortak bir bakış açısı bulunmamaktadır. Bu çalışma, öncelikle TUA hastalarına ait tek-kanal EKG işaretlerindeki KHD’ni zaman, frekans ve doğrusal olmayan yöntemleri kullanarak kapsamlı bir şekilde analiz eder. Daha sonra KHD’nden elde edilen bu özellikleri kullanarak yeni bir sınıflandırma şeması sunar. Ayrıca, korelasyon matrisleri (KM)’ne dayalı yeni bir özellik seçim metodu önerir. Elde edilen sonuçlar, KM’nin hastalık sınıflandırma işlemlerinde özellik kümelerinin seçim ve sınırlandırılması, hedef hastalığı hangi parametrelerin daha iyi ayırt edebildiğini sayısal olarak belirlemesi ve yapay sinir ağları (YSA) sınıflandırma başarımını artırması bakımından değerli bulunmuştur.
dc.description.abstract Obstructive sleep apnea (OSA) syndrome, which causes intermittent upper airway occlusion during sleep, affecting the heart and nervous activity that disrupts sleep patterns, is a serious disease. At present, polysomnography (PSG) is used for the diagnosis of OSA. PSG, requiring a large number of electrodes’ connection, is usually carried out during night sleep, and therefore an expensive, time-consuming test method. Many articles that appeared in the literature agreed upon the diagnosis of OSA can be achieved only through the analysis of heart rate variability (HRV) of ECG signals. In this way, highly accurate results can be obtained. Also, it offers an alternative solution that is more practical, inexpensive and non-invasive as well. Although high accuracies have been achieved in the classification of disease, there has not been a consensus on the matter of which feature parameters are more effective in this classification and the selection of the most appropriate method of HRV analysis. This study, initially, presents a new classification scheme for OSA by using common features belonging to time, frequency and non-linear domains of the HRV analysis of single-channel ECG in a comprehensive manner. In addition, it proposes a new method of feature selection based on the correlation matrices (CM). The results obtained in the classification of disease with using CM were found valuable in terms of selecting and limiting of feature sets, determining which parameters numerically better identify the target disease and increasing the performance of ANN.
dc.format.extent XI, 74 yaprak : şekil, tablo ; 30 cm.
dc.language Türkçe
dc.language.iso tur
dc.publisher Sakarya Üniversitesi
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.uri info:eu-repo/semantics/openAccess
dc.subject Kalp hızı değişkenliği
dc.subject Yapay sinir ağları
dc.subject Uyku apnesi
dc.subject Özellik seçimi
dc.subject Korelasyon matrisi
dc.title EKG işaretlerinden YSA ve korelasyon matrislerine dayalı tıkayıcı uyku apnesi teşhisi
dc.type doctoralThesis
dc.contributor.department Fen Bilimleri Enstitüsü, Elektronik ve Bilgisayar Eğitimi Anabilim Dalı, ,
dc.contributor.author Gürüler, Hüseyin
dc.relation.publicationcategory TEZ


Files in this item

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/ Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/