Uzun vadeli elektrik tüketimi tahmini karar vericiler tarafından sistem genişletme planlaması konusunda karar vermek için kullanılır. Geçtiğimiz on yıl boyunca, elektrik tüketim tahminleri üzerine yapılan araştırmaların nokta tahminleri olarak sonuçları rapor edilmiştir. Özellikle uzun vadeli tahminler için nokta tahminleri çok fazla ilgi çekici değildir. Çünkü bunun sistem genişletme ile ilgili finansal riskinin, talep değişkenliğinin ve tahmin belirsizliğinin tahmin edilmesi için kullanılması güçtür. Bu çalışmada ilk olarak, Uganda'nın net elektrik tüketimini modellemek için, tahmin modellerinde nüfusu, gayri safi yurtiçi hasılayı, abone sayısını ve ortalama elektrik fiyatını değişken olarak gözönüne almak suretiyle üstel, karesel ve Adaptif sinirsel bulanık çıkarım sistemi (ANFIS) formları kullanılmıştır. Parçacık Sürüsü Optimizasyonu (PSO) ve Yapay Arı Kolonosi (YAK) algoritmalarına dayalı bir hibrit algoritma kullanılarak üstel ve karesel tahmin modellerinin parametreleri optimize edilmiştir. ANFIS modelinin parametreleri ise, PSO ve Genetik Algoritma (GA) kullanılarak optimize edilmiştir. İkinci olarak, %90 anlamlılık düzeyli alt ve üst hata sınırlarını elde etmek için basit doğrusal regresyonu kullanarak tahmin kalıntıları modellenmiştir. Uganda'nın 2040 yılına kadarki net elektrik tüketimine ilişkin tahmin aralıklarını oluşturmak için alt ve üst hata sınırları kullanılmıştır. Son olarak, birleştirilmiş öngörme modeli elde etmek için bu dört yönteme ilişkin dört model de birleştirilmiştir. Birleştirilmiş tahminlere göre, 2040 yılında Uganda'nın elektrik tüketim tahmininin, yıllık ortalama %11,75 - %10,64'lük bir artışa işaretle [41,296 42,133] GWh arasında olacağı tahmin edilmiştir
Long term electricity consumption forecasting is used by decision makers to make decisions regarding system expansion planning. Over the past decade, research on electricity consumption forecasting has reported results as point forecasts. Specifically for long-term forecasting, point forecasts are of little interest because it is hard to use them to assess the financial risk associated with system expansion versus demand variability and forecasting uncertainty. In this study, firstly we use power, quadratic and Adaptive Neuro Fuzzy Inference System (ANFIS) forms to model Uganda's net electricity consumption using population, gross domestic product, number of subscribers and average electricity price as variables in the forecasting models. We optimize the parameters of power and quadrtaic forecasting models using a hybrid algorithm based on particle swarm optimization (PSO) and artificial bee colony (ABC) algorithms. The parameters of ANFIS model are optmized using particle swarm optimization and genetic algorithm. Secondly we model the forecast residuals using simple linear regression to obtain 90% significance level lower and upper error bounds. The lower and upper error bounds were used to construct predication intervals for Uganda's net electricity consumption up to year 2040. Finally we combine all the four models from the two methods to get a combined forecasting model. According to the combined forecast, in year 2040 Uganda's electricity consumption will be between [41,296 42,133] GWh indicating an annual average increase of 11.75%-10.64%