Açık Akademik Arşiv Sistemi

Prediction of compressibility parameters of the soils using artificial neural network

Show simple item record

dc.contributor.authors Kurnaz, TF; Dagdeviren, U; Yildiz, M; Ozkan, O;
dc.date.accessioned 2020-02-27T07:00:41Z
dc.date.available 2020-02-27T07:00:41Z
dc.date.issued 2016
dc.identifier.citation Kurnaz, TF; Dagdeviren, U; Yildiz, M; Ozkan, O; (2016). Prediction of compressibility parameters of the soils using artificial neural network. SPRINGERPLUS, 5, -
dc.identifier.issn 2193-1801
dc.identifier.uri https://doi.org/10.1186/s40064-016-3494-5
dc.identifier.uri https://hdl.handle.net/20.500.12619/64819
dc.description.abstract The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.
dc.language English
dc.publisher SPRINGER INTERNATIONAL PUBLISHING AG
dc.title Prediction of compressibility parameters of the soils using artificial neural network
dc.type Article
dc.identifier.volume 5
dc.contributor.department Sakarya Üniversitesi/Mühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü
dc.contributor.saüauthor Yıldız, Murat
dc.contributor.saüauthor Özkan, Özhan
dc.relation.journal SPRINGERPLUS
dc.identifier.wos WOS:000393293600001
dc.identifier.doi 10.1186/s40064-016-3494-5
dc.contributor.author T. Fikret Kurnaz
dc.contributor.author Ugur Dagdeviren
dc.contributor.author Yıldız, Murat
dc.contributor.author Özkan, Özhan


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record