dc.contributor.authors |
Keskin, R |
|
dc.date.accessioned |
2020-01-17T08:21:49Z |
|
dc.date.available |
2020-01-17T08:21:49Z |
|
dc.date.issued |
2014 |
|
dc.identifier.citation |
Keskin, R (2014). GENERALIZED FIBONACCI AND LUCAS NUMBERS OF THE FORM wx(2) AND wx(2) 1. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 51, 1054-1041 |
|
dc.identifier.issn |
1015-8634 |
|
dc.identifier.uri |
https://hdl.handle.net/20.500.12619/6201 |
|
dc.identifier.uri |
https://doi.org/10.4134/BKMS.2014.51.4.1041 |
|
dc.description.abstract |
Let P >= 3 be an integer and let (U-n) and (V-n) denote generalized Fibonacci and Lucas sequences defined by U-0 = 0,U-1 = 1; V-0 = 2,V-1 = P, and Un+1 = PUn Un-1 Vn+1 = PVn - Vn-1 for n >= 1. In this study, when P is odd, we solve the equations V-n = kx(2) and Vn = 2kx(2) with k I P and k > 1. Then, when k I P and k > 1, we solve some other equations such as U-n = kx(2),U-n = 2kx(2),U-n = 3kx(2), V-n = kx(2) 1(n) = 2kx(2) 1, and Un = kx(2) 1. Moreover, when P is odd, we solve the equations V-n = wx(2) + 1 and V-n = wx(2) - 1 for w = 2, 3, 6. After that, we solve some Diophantine equations. |
|
dc.language |
English |
|
dc.publisher |
KOREAN MATHEMATICAL SOC |
|
dc.subject |
generalized Fibonacci numbers; generalized Lucas numbers; congruences; Diophantine equation |
|
dc.title |
GENERALIZED FIBONACCI AND LUCAS NUMBERS OF THE FORM wx(2) AND wx(2) 1 |
|
dc.type |
Article |
|
dc.identifier.volume |
51 |
|
dc.identifier.startpage |
1041 |
|
dc.identifier.endpage |
1054 |
|
dc.contributor.department |
Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü |
|
dc.contributor.saüauthor |
Keskin, Refik |
|
dc.relation.journal |
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY |
|
dc.identifier.wos |
WOS:000340015700013 |
|
dc.identifier.doi |
10.4134/BKMS.2014.51.4.1041 |
|
dc.contributor.author |
Keskin, Refik |
|