Açık Akademik Arşiv Sistemi

GENERALIZED FIBONACCI AND LUCAS NUMBERS OF THE FORM wx(2) AND wx(2) 1

Show simple item record

dc.contributor.authors Keskin, R
dc.date.accessioned 2020-01-17T08:21:49Z
dc.date.available 2020-01-17T08:21:49Z
dc.date.issued 2014
dc.identifier.citation Keskin, R (2014). GENERALIZED FIBONACCI AND LUCAS NUMBERS OF THE FORM wx(2) AND wx(2) 1. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 51, 1054-1041
dc.identifier.issn 1015-8634
dc.identifier.uri https://hdl.handle.net/20.500.12619/6201
dc.identifier.uri https://doi.org/10.4134/BKMS.2014.51.4.1041
dc.description.abstract Let P >= 3 be an integer and let (U-n) and (V-n) denote generalized Fibonacci and Lucas sequences defined by U-0 = 0,U-1 = 1; V-0 = 2,V-1 = P, and Un+1 = PUn Un-1 Vn+1 = PVn - Vn-1 for n >= 1. In this study, when P is odd, we solve the equations V-n = kx(2) and Vn = 2kx(2) with k I P and k > 1. Then, when k I P and k > 1, we solve some other equations such as U-n = kx(2),U-n = 2kx(2),U-n = 3kx(2), V-n = kx(2) 1(n) = 2kx(2) 1, and Un = kx(2) 1. Moreover, when P is odd, we solve the equations V-n = wx(2) + 1 and V-n = wx(2) - 1 for w = 2, 3, 6. After that, we solve some Diophantine equations.
dc.language English
dc.publisher KOREAN MATHEMATICAL SOC
dc.subject generalized Fibonacci numbers; generalized Lucas numbers; congruences; Diophantine equation
dc.title GENERALIZED FIBONACCI AND LUCAS NUMBERS OF THE FORM wx(2) AND wx(2) 1
dc.type Article
dc.identifier.volume 51
dc.identifier.startpage 1041
dc.identifier.endpage 1054
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Keskin, Refik
dc.relation.journal BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY
dc.identifier.wos WOS:000340015700013
dc.identifier.doi 10.4134/BKMS.2014.51.4.1041
dc.contributor.author Keskin, Refik


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record