Açık Akademik Arşiv Sistemi

ON THE LUCAS SEQUENCE EQUATIONS V-n = kV(m) AND U-n = kU(m)

Show simple item record

dc.contributor.authors Keskin, R; Siar, Z;
dc.date.accessioned 2020-01-17T08:21:48Z
dc.date.available 2020-01-17T08:21:48Z
dc.date.issued 2013
dc.identifier.citation Keskin, R; Siar, Z; (2013). ON THE LUCAS SEQUENCE EQUATIONS V-n = kV(m) AND U-n = kU(m). COLLOQUIUM MATHEMATICUM, 130, 38-27
dc.identifier.issn 0010-1354
dc.identifier.uri https://hdl.handle.net/20.500.12619/6189
dc.identifier.uri https://doi.org/10.4064/cm130-1-3
dc.description.abstract Let P and Q be nonzero integers. The sequences of generalized Fibonacci and Lucas numbers are defined by U-0 = 0, U-1 = 1 and Un+1 = PUn - QU(n-1) for n >= 1, and V-0 = 2, V-1 = P and Vn+1 = PVn - QV(n-1) for n >= 1, respectively. In this paper, we assume that P >= 1, Q is odd, (P, Q) = 1, V-m not equal 1, and V-r not equal 1. We show that there is no integer x such that V-n = V(r)V(m)x(2) when m >= 1 and r is an even integer. Also we completely solve the equation V-n = V(m)V(r)x(2) for m >= 1 and r >= 1 when Q equivalent to 7 (mod 8) and x is an even integer. Then we show that when P equivalent to 3 (mod 4) and Q equivalent to 1 (mod 4), the equation V-n = V(m)V(r)x(2) has no solutions for m >= 1 and r >= 1. Moreover, we show that when P > 1 and Q = +/- 1, there is no generalized Lucas number V-n such that V-n = VmVr for m > 1 and r > 1. Lastly, we show that there is no generalized Fibonacci number U-n such that U-n = UmUr for Q = +/- 1 and 1 < r < m.
dc.language English
dc.publisher ARS POLONA-RUCH
dc.subject Mathematics
dc.title ON THE LUCAS SEQUENCE EQUATIONS V-n = kV(m) AND U-n = kU(m)
dc.type Article
dc.identifier.volume 130
dc.identifier.startpage 27
dc.identifier.endpage 38
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Keskin, Refik
dc.relation.journal COLLOQUIUM MATHEMATICUM
dc.identifier.wos WOS:000316775100003
dc.identifier.doi 10.4064/cm130-1-3
dc.identifier.eissn 1730-6302
dc.contributor.author Keskin, Refik


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record