Açık Akademik Arşiv Sistemi

Integral points on the elliptic curve y(2) = x(3)+27x-62

Show simple item record

dc.contributor.authors Karaatli, O; Keskin, R;
dc.date.accessioned 2020-01-17T08:21:48Z
dc.date.available 2020-01-17T08:21:48Z
dc.date.issued 2013
dc.identifier.citation Karaatli, O; Keskin, R; (2013). Integral points on the elliptic curve y(2) = x(3)+27x-62. JOURNAL OF INEQUALITIES AND APPLICATIONS, , -
dc.identifier.issn 1029-242X
dc.identifier.uri https://hdl.handle.net/20.500.12619/6182
dc.identifier.uri https://doi.org/10.1186/1029-242X-2013-221
dc.description.abstract We give a new proof that the elliptic curve y(2) = x(3) + 27x - 62 has only the integral points (x, y) = (2, 0) and (x, y) = (28,844,402, +/- 15,491,585,540) using elementary number theory methods and some properties of generalized Fibonacci and Lucas sequences.
dc.language English
dc.publisher SPRINGEROPEN
dc.subject Mathematics
dc.title Integral points on the elliptic curve y(2) = x(3)+27x-62
dc.type Article
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Karaatlı, Olcay
dc.contributor.saüauthor Keskin, Refik
dc.relation.journal JOURNAL OF INEQUALITIES AND APPLICATIONS
dc.identifier.wos WOS:000323605100004
dc.identifier.doi 10.1186/1029-242X-2013-221
dc.contributor.author Karaatlı, Olcay
dc.contributor.author Keskin, Refik


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record