Açık Akademik Arşiv Sistemi

On Some Generalized B-m-Difference Riesz Sequence Spaces and Uniform Opial Property

Show simple item record

dc.contributor.authors Basarir, M; Ozturk, M
dc.date.accessioned 2020-01-17T08:21:45Z
dc.date.available 2020-01-17T08:21:45Z
dc.date.issued 2011
dc.identifier.citation Basarir, M; Ozturk, M (2011). On Some Generalized B-m-Difference Riesz Sequence Spaces and Uniform Opial Property. JOURNAL OF INEQUALITIES AND APPLICATIONS, , -
dc.identifier.issn 1029-242X
dc.identifier.uri https://hdl.handle.net/20.500.12619/6149
dc.description.abstract We define the new generalized difference Riesz sequence spaces r(infinity)(q)(p, B-m), r(c)(q)(p, B-m), and r(0)(q)(p, B-m) which consist of all the sequences whose B-m-transforms are in the Riesz sequence spaces r(infinity)(q)(p), r(c)(q)(p), and r(0)(q)(p), respectively, introduced by Altay and Basar (2006). We examine some topological properties and compute the alpha-, beta-, and gamma-duals of the spaces r(infinity)(q)(p, B-m), r(c)(q)(p, B-m), and r(0)(q)(p, B-m). Finally, we determine the necessary and sufficient conditions on the matrix transformation from the spaces r(infinity)(q)(p, B-m), r(c)(q)(p, B-m), and r(0)(q)(p, B-m) to the spaces l(infinity) and c and prove that sequence spaces r(0)(q)(p, B-m) and r(c)(q)(p, B-m) have the uniform Opial property for p(k) <= 1 for all k is an element of N.
dc.description.uri https://doi.org/10.1155/2011/485730
dc.language English
dc.publisher SPRINGER INTERNATIONAL PUBLISHING AG
dc.title On Some Generalized B-m-Difference Riesz Sequence Spaces and Uniform Opial Property
dc.type Article
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Başarır, Metin
dc.contributor.saüauthor Öztürk, Mahpeyker
dc.relation.journal JOURNAL OF INEQUALITIES AND APPLICATIONS
dc.identifier.wos WOS:000290339800001
dc.identifier.doi 10.1155/2011/485730
dc.contributor.author Başarır, Metin
dc.contributor.author Öztürk, Mahpeyker


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record