dc.contributor.authors | Basarir, M; Ozturk, M | |
dc.date.accessioned | 2020-01-17T08:21:45Z | |
dc.date.available | 2020-01-17T08:21:45Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Basarir, M; Ozturk, M (2011). On Some Generalized B-m-Difference Riesz Sequence Spaces and Uniform Opial Property. JOURNAL OF INEQUALITIES AND APPLICATIONS, , - | |
dc.identifier.issn | 1029-242X | |
dc.identifier.uri | https://hdl.handle.net/20.500.12619/6149 | |
dc.description.abstract | We define the new generalized difference Riesz sequence spaces r(infinity)(q)(p, B-m), r(c)(q)(p, B-m), and r(0)(q)(p, B-m) which consist of all the sequences whose B-m-transforms are in the Riesz sequence spaces r(infinity)(q)(p), r(c)(q)(p), and r(0)(q)(p), respectively, introduced by Altay and Basar (2006). We examine some topological properties and compute the alpha-, beta-, and gamma-duals of the spaces r(infinity)(q)(p, B-m), r(c)(q)(p, B-m), and r(0)(q)(p, B-m). Finally, we determine the necessary and sufficient conditions on the matrix transformation from the spaces r(infinity)(q)(p, B-m), r(c)(q)(p, B-m), and r(0)(q)(p, B-m) to the spaces l(infinity) and c and prove that sequence spaces r(0)(q)(p, B-m) and r(c)(q)(p, B-m) have the uniform Opial property for p(k) <= 1 for all k is an element of N. | |
dc.description.uri | https://doi.org/10.1155/2011/485730 | |
dc.language | English | |
dc.publisher | SPRINGER INTERNATIONAL PUBLISHING AG | |
dc.title | On Some Generalized B-m-Difference Riesz Sequence Spaces and Uniform Opial Property | |
dc.type | Article | |
dc.contributor.department | Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü | |
dc.contributor.saüauthor | Başarır, Metin | |
dc.contributor.saüauthor | Öztürk, Mahpeyker | |
dc.relation.journal | JOURNAL OF INEQUALITIES AND APPLICATIONS | |
dc.identifier.wos | WOS:000290339800001 | |
dc.identifier.doi | 10.1155/2011/485730 | |
dc.contributor.author | Başarır, Metin | |
dc.contributor.author | Öztürk, Mahpeyker |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |