Açık Akademik Arşiv Sistemi

Fibonacci and Lucas Congruences and Their Applications

Show simple item record

dc.contributor.authors Keskin, R; Bitim, BD
dc.date.accessioned 2020-01-17T08:21:45Z
dc.date.available 2020-01-17T08:21:45Z
dc.date.issued 2011
dc.identifier.citation Keskin, R; Bitim, BD (2011). Fibonacci and Lucas Congruences and Their Applications. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 27, 736-725
dc.identifier.issn 1439-8516
dc.identifier.uri https://hdl.handle.net/20.500.12619/6145
dc.description.abstract In this paper we obtain some new identities containing Fibonacci and Lucas numbers. These identities allow us to give some congruences concerning Fibonacci and Lucas numbers such as L2mn+k equivalent to (-1)((m+1)n) L-k (mod L-m), F2mn+k equivalent to (-1)((m=1)n) F-k (mod L-m), L2mn+k equivalent to (-1)(mn) L-k (mod F-m) and F2mn+k equivalent to (-1)(mn) F-k(mod F-m). By the achieved identities, divisibility properties of Fibonacci and Lucas numbers are given. Then it is proved that there is no Lucas number L-n such that L-n = L(2)k(t)L(m)x(2) for m > 1 and k >= 1. Moreover it is proved that L-n = LmLr is impossible if m and r are positive integers greater than 1. Also, a conjecture concerning with the subject is given.
dc.description.uri https://doi.org/10.1007/s10114-011-9744-0
dc.language English
dc.publisher SPRINGER HEIDELBERG
dc.title Fibonacci and Lucas Congruences and Their Applications
dc.type Article
dc.identifier.volume 27
dc.identifier.startpage 725
dc.identifier.endpage 736
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Keskin, Refik
dc.contributor.saüauthor Demirtürk Bitim, Bahar
dc.relation.journal ACTA MATHEMATICA SINICA-ENGLISH SERIES
dc.identifier.wos WOS:000288908300009
dc.identifier.doi 10.1007/s10114-011-9744-0
dc.identifier.eissn 1439-7617
dc.contributor.author Keskin, Refik
dc.contributor.author Demirtürk Bitim, Bahar


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record