dc.contributor.authors |
Kara, EE; Ozturk, M; Basarir, M; |
|
dc.date.accessioned |
2020-01-17T08:21:44Z |
|
dc.date.available |
2020-01-17T08:21:44Z |
|
dc.date.issued |
2010 |
|
dc.identifier.citation |
Kara, EE; Ozturk, M; Basarir, M; (2010). Some topological and geometric properties of generalized Euler sequence space. MATHEMATICA SLOVACA, 60, 398-385 |
|
dc.identifier.issn |
0139-9918 |
|
dc.identifier.uri |
https://hdl.handle.net/20.500.12619/6130 |
|
dc.identifier.uri |
https://doi.org/10.2478/s12175-010-0019-5 |
|
dc.description.abstract |
In this paper, we introduce the Euler sequence space e (r) (p) of nonabsolute type and prove that the spaces e (r) (p) and l(p) are linearly isomorphic. Besides this, we compute the alpha-, beta- and gamma-duals of the space e (r) (p). The results proved herein are analogous to those in [ALTAY, B.-BASAR, F.: On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26 (2002), 701-715] for the Riesz sequence space r (q) (p). Finally, we define a modular on the Euler sequence space e (r) (p) and consider it equipped with the Luxemburg norm. We give some relationships between the modular and Luxemburg norm on this space and show that the space e (r) (p) has property (H) but it is not rotund (R). |
|
dc.language |
English |
|
dc.publisher |
VERSITA |
|
dc.subject |
Mathematics |
|
dc.title |
Some topological and geometric properties of generalized Euler sequence space |
|
dc.type |
Article |
|
dc.identifier.volume |
60 |
|
dc.identifier.startpage |
385 |
|
dc.identifier.endpage |
398 |
|
dc.contributor.department |
Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü |
|
dc.contributor.saüauthor |
Başarır, Metin |
|
dc.contributor.saüauthor |
Öztürk, Mahpeyker |
|
dc.relation.journal |
MATHEMATICA SLOVACA |
|
dc.identifier.wos |
WOS:000277603400008 |
|
dc.identifier.doi |
10.2478/s12175-010-0019-5 |
|
dc.contributor.author |
Başarır, Metin |
|
dc.contributor.author |
Öztürk, Mahpeyker |
|