Açık Akademik Arşiv Sistemi

Some topological and geometric properties of generalized Euler sequence space

Show simple item record

dc.contributor.authors Kara, EE; Ozturk, M; Basarir, M;
dc.date.accessioned 2020-01-17T08:21:44Z
dc.date.available 2020-01-17T08:21:44Z
dc.date.issued 2010
dc.identifier.citation Kara, EE; Ozturk, M; Basarir, M; (2010). Some topological and geometric properties of generalized Euler sequence space. MATHEMATICA SLOVACA, 60, 398-385
dc.identifier.issn 0139-9918
dc.identifier.uri https://hdl.handle.net/20.500.12619/6130
dc.identifier.uri https://doi.org/10.2478/s12175-010-0019-5
dc.description.abstract In this paper, we introduce the Euler sequence space e (r) (p) of nonabsolute type and prove that the spaces e (r) (p) and l(p) are linearly isomorphic. Besides this, we compute the alpha-, beta- and gamma-duals of the space e (r) (p). The results proved herein are analogous to those in [ALTAY, B.-BASAR, F.: On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26 (2002), 701-715] for the Riesz sequence space r (q) (p). Finally, we define a modular on the Euler sequence space e (r) (p) and consider it equipped with the Luxemburg norm. We give some relationships between the modular and Luxemburg norm on this space and show that the space e (r) (p) has property (H) but it is not rotund (R).
dc.language English
dc.publisher VERSITA
dc.subject Mathematics
dc.title Some topological and geometric properties of generalized Euler sequence space
dc.type Article
dc.identifier.volume 60
dc.identifier.startpage 385
dc.identifier.endpage 398
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Başarır, Metin
dc.contributor.saüauthor Öztürk, Mahpeyker
dc.relation.journal MATHEMATICA SLOVACA
dc.identifier.wos WOS:000277603400008
dc.identifier.doi 10.2478/s12175-010-0019-5
dc.contributor.author Başarır, Metin
dc.contributor.author Öztürk, Mahpeyker


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record