Açık Akademik Arşiv Sistemi

Pythagorean triples containing generalized Lucas numbers

Show simple item record

dc.contributor.authors Siar, Z; Keskin, R;
dc.date.accessioned 2020-01-17T08:21:42Z
dc.date.available 2020-01-17T08:21:42Z
dc.date.issued 2018
dc.identifier.citation Siar, Z; Keskin, R; (2018). Pythagorean triples containing generalized Lucas numbers. TURKISH JOURNAL OF MATHEMATICS, 42, 1912-1904
dc.identifier.issn 1300-0098
dc.identifier.uri https://hdl.handle.net/20.500.12619/6107
dc.identifier.uri https://doi.org/10.3906/mat-1702-102
dc.description.abstract Let P and Q be nonzero integers. Generalized Fibonacci and Lucas sequences are defined as follows: U-0(P, Q) = 0, U-1(P, Q) = 1, and Un+1(P, Q) = PUn(P, Q)+QU(n-1)(P, Q) for n >= 1 and V-0(P, Q) = 2, V-1(P, Q) = P, and Vn+1(P, Q) = PVn(P, Q)+QV(n-1)(P, Q) for n >= 1, respectively. In this paper, we assume that P and Q are relatively prime odd positive integers and P-2+4Q > 0. We determine all indices n such that U-n= (P-2 + 4Q)x(2) . Moreover, we determine all indices n such that (P-2+4Q)U-n = x(2). As a result, we show that the equation V-n(2)(P, 1)+V-n+1(2)(P, 1) = x(2) has solution only for n = 2, P = 1, x = 5 and V-n+1(2)(P, -1) = V-n(2)(P, -1)+x(2) has no solutions. Moreover, we solve some Diophantine equations.
dc.language English
dc.publisher SCIENTIFIC TECHNICAL RESEARCH COUNCIL TURKEY-TUBITAK
dc.subject Mathematics
dc.title Pythagorean triples containing generalized Lucas numbers
dc.type Article
dc.identifier.volume 42
dc.identifier.startpage 1904
dc.identifier.endpage 1912
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Keskin, Refik
dc.relation.journal TURKISH JOURNAL OF MATHEMATICS
dc.identifier.wos WOS:000439579600028
dc.identifier.doi 10.3906/mat-1702-102
dc.identifier.eissn 1303-6149
dc.contributor.author Zafer Siar
dc.contributor.author Keskin, Refik


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record