dc.contributor.authors | Siar, Z; Keskin, R; | |
dc.date.accessioned | 2020-01-17T08:21:42Z | |
dc.date.available | 2020-01-17T08:21:42Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Siar, Z; Keskin, R; (2018). Pythagorean triples containing generalized Lucas numbers. TURKISH JOURNAL OF MATHEMATICS, 42, 1912-1904 | |
dc.identifier.issn | 1300-0098 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12619/6107 | |
dc.identifier.uri | https://doi.org/10.3906/mat-1702-102 | |
dc.description.abstract | Let P and Q be nonzero integers. Generalized Fibonacci and Lucas sequences are defined as follows: U-0(P, Q) = 0, U-1(P, Q) = 1, and Un+1(P, Q) = PUn(P, Q)+QU(n-1)(P, Q) for n >= 1 and V-0(P, Q) = 2, V-1(P, Q) = P, and Vn+1(P, Q) = PVn(P, Q)+QV(n-1)(P, Q) for n >= 1, respectively. In this paper, we assume that P and Q are relatively prime odd positive integers and P-2+4Q > 0. We determine all indices n such that U-n= (P-2 + 4Q)x(2) . Moreover, we determine all indices n such that (P-2+4Q)U-n = x(2). As a result, we show that the equation V-n(2)(P, 1)+V-n+1(2)(P, 1) = x(2) has solution only for n = 2, P = 1, x = 5 and V-n+1(2)(P, -1) = V-n(2)(P, -1)+x(2) has no solutions. Moreover, we solve some Diophantine equations. | |
dc.language | English | |
dc.publisher | SCIENTIFIC TECHNICAL RESEARCH COUNCIL TURKEY-TUBITAK | |
dc.subject | Mathematics | |
dc.title | Pythagorean triples containing generalized Lucas numbers | |
dc.type | Article | |
dc.identifier.volume | 42 | |
dc.identifier.startpage | 1904 | |
dc.identifier.endpage | 1912 | |
dc.contributor.department | Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü | |
dc.contributor.saüauthor | Keskin, Refik | |
dc.relation.journal | TURKISH JOURNAL OF MATHEMATICS | |
dc.identifier.wos | WOS:000439579600028 | |
dc.identifier.doi | 10.3906/mat-1702-102 | |
dc.identifier.eissn | 1303-6149 | |
dc.contributor.author | Zafer Siar | |
dc.contributor.author | Keskin, Refik |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |