Açık Akademik Arşiv Sistemi

Revisiting Burmester theory with complex forms of Bottema's instantaneous invariants

Show simple item record

dc.contributor.authors Eren, K; Ersoy, S;
dc.date.accessioned 2020-01-17T08:21:42Z
dc.date.available 2020-01-17T08:21:42Z
dc.date.issued 2017
dc.identifier.citation Eren, K; Ersoy, S; (2017). Revisiting Burmester theory with complex forms of Bottema's instantaneous invariants. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 62, 437-431
dc.identifier.issn 1747-6933
dc.identifier.uri https://hdl.handle.net/20.500.12619/6094
dc.identifier.uri https://doi.org/10.1080/17476933.2016.1224863
dc.description.abstract The objective of this study is to take advantage of using the concept of complex numbers for instantaneous geometric properties of planar motion of rigid bodies. We consider that both the fixed and the moving planes are Gaussian. Then we give Bottema's instantaneous invariants in complex forms and we study the kinematic geometry of infinitesimally separated positions of a moving Gaussian plane regarding this formulation. The followed analytical method provides a straightforward way to describe order properties of motion. We obtain the complex forms of the inflection circle, cubic of stationary curvature and cubic of twice stationary curvature. Moreover, we give the existence conditions of Ball, Burmester and Ball-Burmester points.
dc.language English
dc.publisher TAYLOR & FRANCIS LTD
dc.subject Mathematics
dc.title Revisiting Burmester theory with complex forms of Bottema's instantaneous invariants
dc.type Article
dc.identifier.volume 62
dc.identifier.startpage 431
dc.identifier.endpage 437
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Ersoy, Soley
dc.relation.journal COMPLEX VARIABLES AND ELLIPTIC EQUATIONS
dc.identifier.wos WOS:000395068700001
dc.identifier.doi 10.1080/17476933.2016.1224863
dc.identifier.eissn 1747-6941
dc.contributor.author K. Eren
dc.contributor.author Ersoy, Soley


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record