dc.contributor.authors |
Keskin, R; Karaatli, O; Siar, Z; Ogut, U; |
|
dc.date.accessioned |
2020-01-17T08:21:42Z |
|
dc.date.available |
2020-01-17T08:21:42Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Keskin, R; Karaatli, O; Siar, Z; Ogut, U; (2017). On the determination of solutions of simultaneous Pell equations x(2) - (a(2)-1) y(2) = y(2) - pz(2)=1. PERIODICA MATHEMATICA HUNGARICA, 75, 344-336 |
|
dc.identifier.issn |
0031-5303 |
|
dc.identifier.uri |
https://hdl.handle.net/20.500.12619/6093 |
|
dc.identifier.uri |
https://doi.org/10.1007/s10998-017-0203-2 |
|
dc.description.abstract |
where p is prime and a > 1. Assuming the solutions of the Pell equation x(2) -(a(2) - 1) y(2) = 1 are x = x(m) and y = y(m) with m = 2, we prove that the system (0.1) has solutions only when m = 2 or m = 3. In the case of m = 3, we show that p = 2 and give the solutions of (0.1) in terms of Pell and Pell-Lucas sequences. When m = 2 and p = 3(mod 4), we determine the values of a, x, y, and z. Lastly, we show that (0.1) has no solutions when p = 1(mod 4). |
|
dc.language |
English |
|
dc.publisher |
SPRINGER |
|
dc.subject |
Mathematics |
|
dc.title |
On the determination of solutions of simultaneous Pell equations x(2) - (a(2)-1) y(2) = y(2) - pz(2)=1 |
|
dc.type |
Article |
|
dc.identifier.volume |
75 |
|
dc.identifier.startpage |
336 |
|
dc.identifier.endpage |
344 |
|
dc.contributor.department |
Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü |
|
dc.contributor.saüauthor |
Keskin, Refik |
|
dc.contributor.saüauthor |
Karaatlı, Olcay |
|
dc.relation.journal |
PERIODICA MATHEMATICA HUNGARICA |
|
dc.identifier.wos |
WOS:000414229100023 |
|
dc.identifier.doi |
10.1007/s10998-017-0203-2 |
|
dc.identifier.eissn |
1588-2829 |
|
dc.contributor.author |
Keskin, Refik |
|
dc.contributor.author |
Karaatlı, Olcay |
|
dc.contributor.author |
Zafer Siar |
|
dc.contributor.author |
Ummugulsum Ogut |
|