Açık Akademik Arşiv Sistemi

Cyclic and some constacyclic codes over the ring Z(4)[u]/< u(2)-1 >

Show simple item record

dc.contributor.authors Ozen, M; Uzekmek, FZ; Aydin, N; Ozzaim, NT;
dc.date.accessioned 2020-01-17T08:21:40Z
dc.date.available 2020-01-17T08:21:40Z
dc.date.issued 2016
dc.identifier.citation Ozen, M; Uzekmek, FZ; Aydin, N; Ozzaim, NT; (2016). Cyclic and some constacyclic codes over the ring Z(4)[u]/< u(2)-1 >. FINITE FIELDS AND THEIR APPLICATIONS, 38, 39-27
dc.identifier.issn 1071-5797
dc.identifier.uri https://hdl.handle.net/20.500.12619/6067
dc.identifier.uri https://doi.org/10.1016/j.ffa.2015.12.003
dc.description.abstract In this paper, we study cyclic codes and constacyclic codes with shift constant (2 + u) over R = Z(4) + uZ(4), where u(2) = 1. We determine the form of the generators of the cyclic codes over this ring and their spanning sets. Considering their Z(4) images, we prove that the Z(4)-image of a (2 + u)-constacyclic code of odd length is a cyclic code over Z(4). We also present many examples of cyclic codes over R whose Z(4)-images have better parameters than previously best-known Z(4)-linear codes. (C) 2015 Elsevier Inc. All rights reserved.
dc.language English
dc.publisher ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.subject Mathematics
dc.title Cyclic and some constacyclic codes over the ring Z(4)[u]/< u(2)-1 >
dc.type Article
dc.identifier.volume 38
dc.identifier.startpage 27
dc.identifier.endpage 39
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Özen, Mehmet
dc.relation.journal FINITE FIELDS AND THEIR APPLICATIONS
dc.identifier.wos WOS:000369351600003
dc.identifier.doi 10.1016/j.ffa.2015.12.003
dc.identifier.eissn 1090-2465
dc.contributor.author Özen, Mehmet
dc.contributor.author Fatma Zehra Uzekmek
dc.contributor.author Nuh Aydin
dc.contributor.author N. Tugba Ozzaim


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record