dc.contributor.authors |
Karaatli, O; Keskin, R; |
|
dc.date.accessioned |
2020-01-17T08:21:39Z |
|
dc.date.available |
2020-01-17T08:21:39Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Karaatli, O; Keskin, R; (2015). GENERALIZED LUCAS NUMBERS OF THE FORM 5kx(2) AND 7kx(2). BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 52, 1480-1467 |
|
dc.identifier.issn |
1015-8634 |
|
dc.identifier.uri |
https://hdl.handle.net/20.500.12619/6036 |
|
dc.identifier.uri |
https://doi.org/10.4134/BKMS.2015.52.5.1467 |
|
dc.description.abstract |
Generalized Fibonacci and Lucas sequences (U-n) and (V-n) are defined by the recurrence relations Un+1 = PUn +QU(n-1) and Vn+1 = PVn + QV(n-1), n >= 1, with initial conditions U-0 = 0, U-1 = 1 and V-0 = 2, V-1 = P. This paper deals with Fibonacci and Lucas numbers of the form U-n (P, Q) and V-n (P, Q) with the special consideration that P >= 3 is odd and Q = -1. Under these consideration, we solve the equations V-n = 5kx(2), V-n = 7kx(2), V-n = 5kx(2)+/- 1, and V-n = 7kx(2)+/- 1 when k vertical bar P with k > 1. Moreover, we solve the equations V-n = 5x(2)+/- 1 and V-n = 7x(2 +/-)1. |
|
dc.language |
English |
|
dc.publisher |
KOREAN MATHEMATICAL SOC |
|
dc.subject |
Mathematics |
|
dc.title |
GENERALIZED LUCAS NUMBERS OF THE FORM 5kx(2) AND 7kx(2) |
|
dc.type |
Article |
|
dc.identifier.volume |
52 |
|
dc.identifier.startpage |
1467 |
|
dc.identifier.endpage |
1480 |
|
dc.contributor.department |
Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü |
|
dc.contributor.saüauthor |
Karaatlı, Olcay |
|
dc.contributor.saüauthor |
Keskin, Refik |
|
dc.relation.journal |
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY |
|
dc.identifier.wos |
WOS:000363840500005 |
|
dc.identifier.doi |
10.4134/BKMS.2015.52.5.1467 |
|
dc.contributor.author |
Karaatlı, Olcay |
|
dc.contributor.author |
Keskin, Refik |
|