Açık Akademik Arşiv Sistemi

Geometry of the Hyperbolic Spinors Corresponding to Alternative Frame

Show simple item record

dc.contributor.authors Erisir, T; Gungor, MA; Tosun, M;
dc.date.accessioned 2020-01-17T08:21:39Z
dc.date.available 2020-01-17T08:21:39Z
dc.date.issued 2015
dc.identifier.citation Erisir, T; Gungor, MA; Tosun, M; (2015). Geometry of the Hyperbolic Spinors Corresponding to Alternative Frame. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 25, 810-799
dc.identifier.issn 0188-7009
dc.identifier.uri https://hdl.handle.net/20.500.12619/6035
dc.identifier.uri https://doi.org/10.1007/s00006-015-0552-y
dc.description.abstract In this paper, we study to express the theory of curves including a wide section of Lorentzian geometry in terms of spinors with two hyperbolic components which has an important place in the Clifford algebra. In other words, we express the rotation, element of SO(1, 3), between the Frenet frame and the other frame defined as alternatively of the (spacelike or timelike) curves in Minkowski space in terms of the rotation, element of , with the aid of the hyperbolic spinors.
dc.language English
dc.publisher SPRINGER BASEL AG
dc.subject Physics
dc.title Geometry of the Hyperbolic Spinors Corresponding to Alternative Frame
dc.type Article
dc.identifier.volume 25
dc.identifier.startpage 799
dc.identifier.endpage 810
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Erişir, Tülay
dc.contributor.saüauthor Güngör, Mehmet Ali
dc.contributor.saüauthor Tosun, Murat
dc.relation.journal ADVANCES IN APPLIED CLIFFORD ALGEBRAS
dc.identifier.wos WOS:000363232700003
dc.identifier.doi 10.1007/s00006-015-0552-y
dc.identifier.eissn 1661-4909
dc.contributor.author Erişir, Tülay
dc.contributor.author Güngör, Mehmet Ali
dc.contributor.author Tosun, Murat


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record