Açık Akademik Arşiv Sistemi

Perfect Mannheim, Lipschitz and Hurwitz weight codes

Show simple item record

dc.contributor.authors Guzeltepe, M; Heden, O
dc.date.accessioned 2020-01-17T08:21:38Z
dc.date.available 2020-01-17T08:21:38Z
dc.date.issued 2014
dc.identifier.citation Guzeltepe, M; Heden, O (2014). Perfect Mannheim, Lipschitz and Hurwitz weight codes. MATHEMATICAL COMMUNICATIONS, 19, 276-253
dc.identifier.issn 1331-0623
dc.identifier.uri https://hdl.handle.net/20.500.12619/6019
dc.description.abstract The set of residue classes modulo an element pi in the rings of Gaussian integers, Lipschitz integers and Hurwitz integers, respectively, is used as alphabets to form the words of error correcting codes. An error occurs as the addition of an element in a set E to the letter in one of the positions of a word. If epsilon is a group of units in the original rings, then we obtain the Mannheim, Lipschitz and Hurwitz metrics, respectively. Some new perfect 1-error-correcting codes in these metrics are constructed. The existence of perfect 2-error-correcting codes is investigated by computer search.
dc.language English
dc.publisher UNIV OSIJEK, DEPT MATHEMATICS
dc.subject block codes; Lipschitz distance; Mannheim distance; perfect code
dc.title Perfect Mannheim, Lipschitz and Hurwitz weight codes
dc.type Article
dc.identifier.volume 19
dc.identifier.startpage 253
dc.identifier.endpage 276
dc.contributor.department Sakarya Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.saüauthor Güzeltepe, Murat
dc.relation.journal MATHEMATICAL COMMUNICATIONS
dc.identifier.wos WOS:000345431400004
dc.contributor.author Güzeltepe, Murat


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record