Abstract:
A flexible lithium manganese oxide (LiMn2O4)/multi-wall carbon nanotube (MWCNT) composite electrode was produced by casting a slurry-containing powdered LiMn2O4 on a previously prepared MWCNT paper. The structure of this new LiMn2O4/MWCNT composite electrode was characterized using scanning electron microscopy and X-ray diffraction patterns. Furthermore, the surfaces of these electrodes were coated with gold-palladium alloy using an RF magnetron sputtering technique to prevent Mn dissolution. To investigate the electrochemical performance of this flexible LiMn2O4/MWCNT composite electrode, a bare-LiMn2O4 electrode was prepared. The discharge capacity of the produced LiMn2O4/MWCNT nanocomposite electrode was cyclically tested, and the charge transfer resistance of the electrodes was studied using electrochemical impedance spectroscopy. Consequently, the Au-Pd-coated LiMn2O4/MWCNT had a 120 mAh g(-1) discharge capacity and 90 % capacity retention after 100 cycles.