Açık Akademik Arşiv Sistemi

Artificial neural network modelling for polyethylene FSSW parameters

Show simple item record

dc.contributor.authors Kurtulmus, M; Kiraz, A;
dc.date.accessioned 2020-02-25T11:40:55Z
dc.date.available 2020-02-25T11:40:55Z
dc.date.issued 2018
dc.identifier.citation Kurtulmus, M; Kiraz, A; (2018). Artificial neural network modelling for polyethylene FSSW parameters. SCIENTIA IRANICA, 25, 1271-1266
dc.identifier.issn 1026-3098
dc.identifier.uri https://doi.org/10.24200/sci.2018.50030.1473
dc.identifier.uri https://hdl.handle.net/20.500.12619/48191
dc.description.abstract In a Friction Stir Spot Welding (FSSW) process, welding parameters (the tool rotational speed, tool plunge depth, and stirring time) affect the nugget formation in high-density polyethylene (HDPE) sheets. The size and microstructure of the nugget determine the resistance of the joint to outer forces. The optimization of these parameters is vital to obtaining high-quality welds. Feed forward back-propagation artificial neural network models are developed to optimize the FSSW parameters for HDPE sheets. Input variables of these models include tool rotation speed (rpm), the plunge depth (mm), and the stirring time (s) that affect lap-shear fracture load (N) output. Prediction performances of 6 models in different specifications are compared. These models differ in terms of the training dataset used (80%-100%) and the number of neurons (5-10-20) in a hidden layer. The best prediction performances are obtained using 20 neurons in a hidden layer in both training dataset. There is good agreement between developed models' predictions and the experimental data. (c) 2018 Sharif University of Technology. All rights reserved.
dc.language English
dc.publisher ELSEVIER SCIENCE BV
dc.subject Engineering
dc.title Artificial neural network modelling for polyethylene FSSW parameters
dc.type Article
dc.identifier.volume 25
dc.identifier.startpage 1266
dc.identifier.endpage 1271
dc.contributor.department Sakarya Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü
dc.contributor.saüauthor Kiraz, Alper
dc.relation.journal SCIENTIA IRANICA
dc.identifier.wos WOS:000439022800010
dc.identifier.doi 10.24200/sci.2018.50030.1473
dc.contributor.author M. Kurtulmus
dc.contributor.author Kiraz, Alper


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record