Abstract:
The selective extraction and concentration of nickel from ammoniacal solutions containing nickel and cobalt by an emulsion liquid membrane (ELM) technique using 5,7-dibromo-8-hydroxyquinoline (DBHQ) as extractant has been presented. ELM consists of a diluent (kerosene), a surfactant (Span 80), an extractant (DBHQ), a modifier (tributyl phosphate), and a stripping solution (very dilute sulfuric acid solution containing EDTA as complexing agent, buffered at pH 4.25). Cobalt (II) in feed solution with 6 mol/L ammonia was oxidised to Cobalt (III) by H(2)O(2) and pH of this ammoniacal solution was adjusted to 10.0 with the addition of hydrochloric acid (HCl). The important variables governing the permeation of nickel and their effect on the separation process have been studied. These variables were membrane composition, ammonia concentration in the feed solution, mixing speed, surfactant concentration, extractant concentration, pH of the feed and the stripping solutions, complexing agent concentration in the stripping solution, and phase ratio. After the optimum conditions had been determined, it was possible to selectively extract 99% of nickel from the ammoniacal solutions containing Ni and Co. The separation factors of nickel with respect to cobalt, based on initial feed concentration, have experimentally found to be of as high as 88.1 for about equimolar Co-Ni feed solutions. (C) 2008 Elsevier Ltd. All rights reserved.