Abstract:
The vibrational frequencies and molecular geometry of (R)- and (rac)-4-phenly-1,3-oxazolidin-2-one (4-POO) in the ground state have been calculated using the Hartree-Fock and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths are described better by HF while bond angles are reproduced more accurately by DFT (B3LYP). Comparison of the observed fundamental vibrational frequencies of (R)-POO and (rac)-4-POO and calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. (c) 2005 Elsevier B.V. All rights reserved.