Açık Akademik Arşiv Sistemi

Deep learning approaches in electron microscopy imaging for mitochondria segmentation

Show simple item record

dc.contributor.authors Oztel, I; Yolcu, G; Ersoy, I; White, TA; Bunyak, F;
dc.date.accessioned 2020-01-13T07:57:02Z
dc.date.available 2020-01-13T07:57:02Z
dc.date.issued 2018
dc.identifier.citation Oztel, I; Yolcu, G; Ersoy, I; White, TA; Bunyak, F; (2018). Deep learning approaches in electron microscopy imaging for mitochondria segmentation. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 21, 106-91
dc.identifier.issn 1748-5673
dc.identifier.uri https://hdl.handle.net/20.500.12619/2499
dc.identifier.uri https://doi.org/10.1504/IJDMB.2018.096398
dc.description.abstract Deep neural networks provide outstanding classification and detection accuracy in biomedical imaging applications. We present a study for mitochondria segmentation in electron microscopy (EM) images. Mitochondria play a significant role in cell cycle by generating the needed energy, and show quantifiable morphological differences with diseases such as cancer, metabolic disorders, and neurodegeneration. EM imaging allows researchers to observe the morphological changes in cells as part of disease process at a high resolution. Manual segmentation of mitochondria in large sequences of EM images is time consuming and prone to subjective delineation. Thus, manual segmentation may not provide the high accuracy needed for accurate quantification of morphological changes. We show that a convolutional neural network provides accurate mitochondria segmentation in CA1 hippocampus area of brain that is imaged by a focused ion beam scanning electron microscope (FIBSEM). We compare our results with other studies which report results on the same data set and with other deep neural network approaches, and provide quantitative comparison.
dc.language English
dc.publisher INDERSCIENCE ENTERPRISES LTD
dc.subject Mathematical & Computational Biology
dc.title Deep learning approaches in electron microscopy imaging for mitochondria segmentation
dc.type Article
dc.identifier.volume 21
dc.identifier.startpage 91
dc.identifier.endpage 106
dc.contributor.department Sakarya Üniversitesi/Bilgisayar Ve Bilişim Bilimleri Fakültesi/Bilgisayar Mühendisliği Bölümü
dc.contributor.saüauthor Öztel, İsmail
dc.contributor.saüauthor Yolcu Öztel, Gözde
dc.relation.journal INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS
dc.identifier.wos WOS:000451832900001
dc.identifier.eissn 1748-5681
dc.contributor.author Öztel, İsmail
dc.contributor.author Yolcu Öztel, Gözde
dc.contributor.author Ilker Ersoy
dc.contributor.author Tommi A. White
dc.contributor.author Filiz Bunyak


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record