Açık Akademik Arşiv Sistemi

1,3,5 Triazin-tetraetilen pentamin polimeri ile cu(ıı) iyonlarının katı faz ekstraksiyonundan sonra çeşitli sebzelerde faas ile tayini = Determination of cu(ii) levels in various vegetables by faas after solid phase extraction using 1,3,5 triazine-tetraethylene pentamine polymer

Show simple item record

dc.contributor.advisor Profesör Doktor Mustafa İmamoğlu
dc.date.accessioned 2024-07-10T08:29:05Z
dc.date.available 2024-07-10T08:29:05Z
dc.date.issued 2024
dc.identifier.citation Şağban, Hande Nur Beyza. (2024). 1,3,5 Triazin-tetraetilen pentamin polimeri ile cu(ıı) iyonlarının katı faz ekstraksiyonundan sonra çeşitli sebzelerde faas ile tayini = Determination of cu(ii) levels in various vegetables by faas after solid phase extraction using 1,3,5 triazine-tetraethylene pentamine polymer. (Yayınlanmamış Yüksek Lisans Tezi). Sakarya Üniversitesi Fen Bilimleri Enstitüsü
dc.identifier.uri https://hdl.handle.net/20.500.12619/102422
dc.description 06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.
dc.description.abstract Bu tez çalışmasında Sakarya ilindeki marketlerden temin edilen çeşitli sebzelerde Cu(II) iyonlarının derişimlerini tayin etmek için yeni bir katı faz ekstraksiyon metodu geliştirildi. Çalışmada ilk olarak 1,3,5 triazin – tetraetilen pentamin polimeri (TATEPA) sentezlendi ve karakterize edildi. Sentezlenen polimerin karakterizasyonu C, H, N elemental analiz, Fourier Dönüşümlü Kızılötesi Spektrometri (FT-IR) ve Taramalı Elektron Mikroskobu – Enerji Dağılımlı Spektrometri (SEM-EDS) ile yapıldı. Kesikli adsorpsiyon (batch) yöntemi ile yapılan çalışmalarda Cu(II) iyonlarının TATEPA üzerinde adsorpsiyonuna başlangıç derişiminin, karıştırma süresinin, pH'nın ve TATEPA miktarının etkisi incelendi. Kesikli yöntemde optimum karıştırma süresi 4 saat, pH 5,0-7,0, TATEPA miktarı 20 mg/100 mL olarak belirlendi. Cu(II) iyonlarının TATEPA polimeri üzerinde adsorpsiyon kinetiğinin incelenmesi sonucunda adsorpsiyon kinetiğinin sahte ikinci derece denkleme uygun olduğu sonucuna varılmıştır. Cu(II) iyonunun TATEPA polimeri ile adsorpsiyonunun Langmuir izoterm eşitliği ile uyumlu olduğu ve TATEPA polimerinin adsorpsiyon kapasitesi 400 mg/g olarak bulunmuştur. Çalışma için hazırlanan TATEPA polimeri kullanılarak katı faz ekstraksiyon yöntemi ile zenginleştirilen Cu(II) iyonlarının derişimi alevli atomik absorpsiyon spektrometresi (FAAS) ile ölçüldü. Geliştirilen katı faz ekstraksiyon yöntemini optimize etmek için örnek çözeltilerinin akış hızı ve hacmi ile elüent akış hızı ve hacmi ve ayrıca matriks iyonlarının etkisi parametreleri incelendi. 500 mL hacmindeki numune 10 mL/dk akış hızında kolondan geçirildikten sonra elüent olarak 5 mL hacminde 0,5 M HNO3'ün 5 mL/dk akış hızında kullanımıyla Cu(II) iyonlarının kantitatif olarak geri kazanılabildiği ve çeşitli matriks iyonlarının kantitatif geri kazanımı bozabilen bir girişim yapmadığı bulundu. Geliştirilen yöntemin zenginleştirme faktörü 100, gözlenebilme ve tayin sınırları ise sırasıyla 0,12 ve 0,37 μg/L olarak hesaplandı. Geliştirilen katı faz ekstraksiyon yöntemi, sertifikalı standart referans maddeler olan Virginia tütün yaprağı (CTA-VTL-2) ve Ontario göl suyunda (TMDA-54.4) Cu(II) derişimi analiz edilerek doğrulandı. Geliştirilen kolon katı faz ekstraksiyon yöntemi kullanılarak alevli atomik absorpsiyon spektrometresi (FAAS) ile Sakarya ilindeki yerel marketlerden satın alınan biber, domates, maydanoz, dereotu ve kabak gibi çeşitli sebze örneklerinde bakır derişimleri başarıyla tayin edildi.
dc.description.abstract In recent years, environmental pollution has been increasing with rapid industrialization and population growth. As a result, trace element levels in products such as water and food can reach levels that endanger the health of humans and other living organisms (Cagirdi et al, 2014). Heavy metals generally contaminate the environment with industrial wastewater and can reach aquatic plants and animals through the food chain, and then to humans (Singh et al, 2023). It is possible to divide metal ions into two groups as essential and toxic for living organisms. Copper, iron, zinc etc. are essential metals, while mercury, cadmium, lead, etc. metals can be counted among toxic metals (Das et al, 2023). While toxic metals have a toxic effect on human health even at trace levels, essential metals entering the body of humans and living organisms above a certain level can have toxic effects (Tchounwou et al, 2012). Copper is among the essential metals for human health. Lack of the Cu(II) concentration in the human body causes approximately 60 to 70 enzymes to be less effective (Cagirdi et al, 2014). Additionally, copper deficiency in the human body can cause anemia and some disorders in bone structure (Martinez and Motto, 2000). For these reasons, determination of trace copper concentration in water and food samples is very important. Many instrumental analysis techniques are used to determine trace elements. Flame atomic absorption spectrometry (FAAS) is available in many laboratories. However, flame AAS allows determinations at the mg/L level. Enrichment methods are needed to obtain more precise and accurate results in the analysis of elements at very low concentrations (Saygılı Canlıdinç, 2020). The applicability of the solid phase extraction method (SPE) is simple and easily applicable, and provides a high enrichment factor (Ghaedi et al, 2010). Reusability of SPE adsorbents for their practical applications is another advantage among the other preconcentration techniques (Faraji et al, 2019). There are many solid adsorbents used in the SPE of trace elements. Silica gel (Efe and Imamoglu, 2017; Ozer and Imamoglu, 2017), activated carbon (Tunay et al, 2022; Koklu and Imamoglu, 2022), ion exchangers (Imamoglu and Gunes, 2012; Benallaa et al, 2022), chelating polymers (Ozer et al, 2017; Chen et al, 2022) and natural polymers (Gao et al, 2023; Ammar ve et al, 2023) can be given as examples of these adsorbents. Chelating resins, one of the sorbents used in the solid phase extraction method, are preferred due to their selective adsorption properties. Chelating resins, one of the sorbents used in the solid phase extraction method, are preferred due to their selective adsorption properties. Chelating resins contain functional groups such as carboxylic acids, thiols, alcohols, phosphoric acids, amides, amines, etc. groups (Elci et al, 2007; Garg et al, 1999; Bilba et al, 2004). Chelating resins polymers including bis-picolylamine, iminodiacetate functionalized resins (Edebali and Pehlivan, 2016), iminodiacetic, bis-picolylamine and polyamine-bonded polymers (Deng et a., 2020), iminodiacetic functional group-bearing and cross-linked polymers (Deng et al, 2020), Lewatit TP 207, a macroporous chelating cationic resin with a bonded polystyrene matrix (Botelho Junior et al, 2019), cross-linked magnetic chitosan-isatin Schiff base resin, and cross-linked magnetic chitosan-diacetylmonoxime Schiff base resin (Monier et al, 2010), poly-chloromethyl styrene chelating resin (CPS-DI) (Zou et al, 2021), which contains 4,5-diazafluoren-9-one and heterofluorenone side groups, and bispicolylamine chelating resin (Robshaw, 2020) have been used for Cu(II) adsorption. In the literature, the use of various polyamine-based polymer sorbents for solid phase extraction of trace elements has been reported. For example, adsorption of Cd(II) ions in tetraethylene pentaamine (TEPA) polyurea-polyamine polymer (Ozer and Imamoglu, 2017), adsorption of Pd(II) ions in 1,3,5-triazine pentaethylene hexamine (TAPEHA) polymer (Sayın et al, 2015), 1,3,5-triazine pentaethylene hexamine (TAPEHA) polymer Rh(III) adsorption (Sayın et al, 2017), triazine-ethylenediamine (EDA), triazine-triethylenetetramine (TETA), triazine-pentaethylenehexamine (PEHA) polymers for Au(III) adsorption (Doğan et al, 2016), triazine crodd-linked polyethyleneimine polymer Au(III) adsorption (Hu et al, 2022), glutaraldehyde cross-linked polyethyleneimine polymer Au(III) and Pd(II) adsorption (Zhang et al, 2023). However, no studies on Cu(II) adsorption and solid phase extraction with 1,3,5 triazine-tetraethylene pentamine polymer have been found in the literature. In this thesis, a new solid phase extraction method was developed for the determination of copper concentration in various vegetables obtained from local markets in Sakarya province using 1,3,5 triazine-tetraethylene pentamine (TATEPA) polymer. Characterization of the synthesized sorbent was performed by C, H, N elemental analysis, Fourier Transform Infrared Spectrometry (FT-IR) and Scanning Electron Microscopy – Energy Dispersive Spectrometry (SEM-EDS). The effects of initial concentration, mixing time, pH and amount of TATEPA were examined by batch adsorption method. In the batch method, the optimum mixing time was determined as 4 hours, pH 5.0-7.0, and the amount of TATEPA was 20 mg/100 mL. As a result of examining the adsorption kinetics of Cu(II) ions by TATEPA polymer, it was concluded that the adsorption kinetics complies with the pseudo-second order equation. It was found that the adsorption of Cu(II) ion with TATEPA polymer was compatible with the Langmuir isotherm equation and the adsorption capacity of TATEPA polymer was calculated to be 400 mg/g. The concentration of Cu(II) ions enriched by the solid phase extraction method using the TATEPA polymer was determined by flame atomic absorption spectrometer (FAAS). To optimize the developed solid phase extraction method, the parameters of sample flow rate and volume, eluent flow rate, type and volume, as well as the effect of matrix ions were examined. After passing the sample in a volume of 500 mL through the column at a flow rate of 10 mL/min, Cu(II) ions can be recovered quantitatively by using 5 mL of 0.5 M HNO3 as the eluent at a flow rate of 5 mL/min. Various matrix ions were not to interfere with quantitative recovery of Cu(II). The enrichment factor of the developed method was calculated as 100, and the detection and quantitation limits were calculated as 0.12 and 0.37 μg/L, respectively. The developed solid phase extraction method was validated by analyzing Cu(II) concentration in certified standard reference materials, Virginia tobacco leaf (CTA-VTL-2) and Ontario lake water (TMDA-54.4). The developed solid phase extraction method successfully determined Cu(II) levels in various vegetable samples purchased from local markets in Sakarya province of Turkiye.
dc.format.extent xxvi, 44 yaprak : şekil, tablo ; 30 cm.
dc.language Türkçe
dc.language.iso tur
dc.publisher Sakarya Üniversitesi
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.uri info:eu-repo/semantics/openAccess
dc.title 1,3,5 Triazin-tetraetilen pentamin polimeri ile cu(ıı) iyonlarının katı faz ekstraksiyonundan sonra çeşitli sebzelerde faas ile tayini = Determination of cu(ii) levels in various vegetables by faas after solid phase extraction using 1,3,5 triazine-tetraethylene pentamine polymer
dc.type masterThesis
dc.contributor.department Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Analitik Kimya Ana Bilim Dalı
dc.contributor.author Şağban, Hande Nur Beyza
dc.relation.publicationcategory TEZ


Files in this item

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/ Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/