THE MIXED BOUNDARY VALUE PROBLEM FOR A THIRD ORDER EQUATION WITH MULTIPLE CHARACTERISTICS

Yu.P.Apakov

Namangan Engineering-Pedagogical Institute
8, Ziyokor str., Namangan 160103, Uzbekistan
E-mail: apakov.1956@mail.ru

Abstract

In the paper, the boundary value problem is considered for equation $U x x x-U y y=0$ in the domain $D=\{(x ; y) ; 0<x<a ; 0<y<b\}$.

 Uniqueness of the stated problem is proved by the method of energy integral. The solution is constructed by the Fourier method. Eigenvalues and eigenfunctions are found for a problem of Sturm-Louville's type.Key words: mixed boundary value problem, multiple characteristics, method of energy integral.

ÖZET

Bu makalede, $D=\{(x ; y) ; 0<x<a ; 0<y<b\} \quad$ bölgesinde $U_{x x x}-U_{y y}=0$ eşitliği için sınır değer problemi incelenmiştir. Ortaya konulan problemin tekliği enerji integrali metoduyla ispatlanmıştır. Bu çözüm Fourier metoduyla kurulmuştur. Özdeğerler ve özfonksiyonlar Sturn-Louville tipli bir problem için bulunmuştur.
Anahtar Kelimeler: karışık sınır değer problemi, çoklu karakteristikler, enerji integralinin metodu.

1. Introduction

Consider the equation
$U x x x-U y y=0$
in the domain $D=\{(x ; y) ; 0<x<a ; 0<y<b\}$.

First works devoted to the equation (1) were papers of Italian mathematics H. Block [6] and E. Del Vecchio [12,13]. Then their results were generalized in the paper by L. Cattabriga [7] where he constructed fundamental solutions and developed the theory of potentials. Later, various boundary value problems were studied in [1]-[2] using fundamental solutions constructed in [7].

Some local boundary value problems for the equation (1) were constructed in [3]-[5] where solutions were constructed using the Fourier method.

2. Statement of the problem

We study the following boundary value problem for the equation (1) in the domain D.
Problem \boldsymbol{A}_{α}. To find a regular solution $U(x, y) \in C_{x, y}^{3,2}(D) \cap C_{x, y}^{2,1}(\bar{D})$ of the equation (1) in the domain D satisfying the boundary conditions

$$
\left.\begin{array}{l}
\alpha U(x, 0)+\beta U_{y}(x, 0)=0, \\
\gamma U(x, b)+\delta U_{y}(x, b)=0,
\end{array}\right\} 0<x<a, ~ \begin{aligned}
& \alpha \tag{3}\\
& U_{x x}(0, y)=\varphi_{1}(y), \quad U_{x}(a ; y)=\varphi_{2}(y), \quad U_{x x}(a, y)=\varphi_{3}(y), \quad 0 \leq y \leq b
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta$ are constants such that $\alpha^{2}+\beta^{2} \neq 0, \gamma^{2}+\delta^{2} \neq 0$ and
functions $\varphi_{j} \in C^{1}[0, b], j=1,3, \varphi_{2} \in C^{2}[0, b], \varphi_{i}(0)=\varphi_{i}(b), i=1,2,3$.
Note that Problem A_{α} was considered at $\alpha=\gamma=1, \beta=\delta=0$ [3] at $\beta=\delta=1, \alpha=\gamma=0$ in [4], and an analogous problem was considered in [5].

3. Uniqueness of the solution

Theorem 1. If $\alpha \beta \leq 0, \gamma \delta \geq 0$, then the homogeneous problem A_{α} has not more than one solution.

Proof. Suppose the opposite, i.e. let $U_{1}(x, y)$ and $U_{2}(x, y)$ be solutions of Problem A_{α}. Then $U(x, y)=U_{1}(x, y)-U_{2}(x, y)$ is the solution of the homogeneous problem.

Consider the identity

$$
\frac{\partial}{\partial x}\left(U U_{x x}-\frac{1}{2} U_{x}^{2}\right)-\frac{\partial}{\partial y}\left(U U_{y}\right)+U_{y}^{2}=0 .
$$

Integrating it in D and taking into account homogeneous boundary conditions, we obtain
$\frac{1}{2} \int_{0}^{b} U_{x}^{2}(0, y) d y-\int_{0}^{a} U(x, b) U_{y}(x, b) d x+\int_{0}^{a} U(x, 0) U_{y}(x, 0) d x+\iint_{D} U_{y}^{2}(x, y) d x d y=0$.
Requiring $\alpha \neq 0, \gamma \neq 0$ in (2), we have

$$
\frac{1}{2} \int_{0}^{b} U_{x}^{2}(0, y) d y-\frac{\delta}{\gamma} \int_{0}^{a} U_{y}^{2}(x, b) d x-\frac{\beta}{\alpha} \int_{0}^{a} U_{y}^{2}(x, 0) d x+\iint_{D} U_{y}^{2}(x, y) d x d y=0
$$

Taking into account conditions of theorem, we obtain $U_{y}(x, y)=0 \quad$, i.e. $U(x, y)=f(x) . \quad U_{y}(x, 0)=0 \quad$ therefore $U(x, 0)=0$, hence, $f(x) \equiv 0 \quad$ or $U(x, y)=0$. If $\alpha \neq 0$, $\delta \neq 0, \beta \neq 0, \gamma \neq 0$, then we also have $U(x, y)=0$.

4. Existence of the solution

Consider the following subsidiary problem: to find a non-zero solution of the equation (1) satisfying conditions (2) which is represented in the form

$$
\begin{equation*}
U(x, y)=X(x) Y(y) \tag{4}
\end{equation*}
$$

Substituting (4) in (1) and separating the variables, we obtain

$$
\begin{align*}
& Y^{\prime \prime}+\lambda Y=0 \tag{5}\\
& X^{\prime \prime \prime}+\lambda X=0 \tag{6}
\end{align*}
$$

We have from (5) and (2) the problem of Sturm-Louville's type:

$$
\left.\begin{array}{l}
Y^{\prime \prime}+\lambda Y=0 \tag{7}\\
\alpha Y(0)+\beta Y^{\prime}(0) \\
\gamma(b)+\delta Y^{\prime}(b)
\end{array}\right\}
$$

It is known [10] that eigenvalues of the parameter λ, for the problem (7) exist only at $\lambda>0$, the corresponding general solution has the form

$$
Y(y)=C_{1} \cos \sqrt{\lambda} y+C_{2} \sin \sqrt{\lambda} y
$$

where C_{1}, C_{2} are arbitrary constants.
Satisfying the conditions of the problem (7), we obtain the transcendental equation for determination of λ :

$$
\begin{equation*}
\operatorname{ctg} \sqrt{\lambda} y=\frac{\alpha \gamma+\lambda \delta \beta}{\sqrt{\lambda}(\gamma \beta-\alpha \delta)} . \tag{8}
\end{equation*}
$$

Putting $\xi=\sqrt{\lambda} b$, we have

$$
\operatorname{ctg} \xi=\frac{P_{1}+P_{2} \xi^{2}}{P_{3} \xi} .
$$

where $P_{1}=a \gamma b^{2}, P_{2}=\delta \beta, P_{3}=b(\gamma \beta-\alpha \delta)$.
Rewrite this equation as the system

$$
\begin{align*}
& \eta=\operatorname{ctg} \xi \\
& \eta=\frac{P_{1}+P_{2} \xi^{2}}{P_{3} \xi}=\frac{1}{P_{3}}\left(\frac{P_{1}}{\xi}+P_{2} \xi\right) . \tag{9}
\end{align*}
$$

Then points of intersection of two curves give the eigenvalue $\lambda_{n}=\frac{1}{b^{2}} \xi^{2}$. The first curve is the graph of $\eta=\operatorname{ctg} \xi$ at $\xi>0$, and the second one is a hyperbola.

We conclude that the system (9) has infinite set of roots and these roots are real and different, i.e. , $\lambda_{n}-\lambda_{m} \neq 0$ if $m \neq n$ and $\lambda_{n}>\lambda_{m}$ as $n>m$. Thus, $\left\{\lambda_{n}\right\}$ form an increasing sequence.

These roots are $0<\xi_{1}<\frac{\pi}{2}$ and $\xi_{n}=\xi_{1}+(n-1) \pi, n=1,2,3, \ldots$. Then eigenvalues have the form $\lambda_{n}=\frac{1}{b^{2}}\left[\xi_{1}+(n-1) \pi\right]^{2}$.

Corresponding eigenfunctions have the form

$$
\begin{equation*}
Y_{n}(y)=\left(\alpha \sin \sqrt{\lambda_{n}} y-\beta \sqrt{\lambda_{n}} \cos \sqrt{\lambda_{n}} y\right) A_{n} \tag{10}
\end{equation*}
$$

where A_{n} are constants.
Let's prove that the system of functions $\left\{Y_{n}(y)\right\}$ (10) of the problem (7) is orthogonal in the segment $[0, b]$.

The orthogonality of the system (10) is proven as the work in [11].

At $n=m$, without any loss of generality supposing $A_{n}=1$, we obtain

$$
\begin{aligned}
\left\|Y_{n}(y)\right\|^{2} & =\int_{0}^{b} Y_{n}^{2}(y) d y=\int_{0}^{b}\left(\alpha \sin \sqrt{\lambda_{n}} y-\beta \sqrt{\lambda_{n}} \cos \sqrt{\lambda_{n}} y\right)^{2} d y \\
& =\frac{1}{2}\left(\alpha^{2} b+\beta^{2} \lambda_{n} b-\alpha \beta\right)+\frac{\beta^{2} \lambda_{n}-\alpha^{2}}{4 \sqrt{\lambda_{n}}} \sin 2 \sqrt{\lambda_{n}} b+\frac{\alpha \beta}{2} \cos 2 \sqrt{\lambda_{n}} b .
\end{aligned}
$$

The general solution of the equation (6) has the form

$$
\begin{equation*}
X_{n}(x)=C_{1 n} e^{-k_{n} x}+e^{\frac{1}{2} k_{n} x}\left(C_{2 n} \cos v_{n} x+C_{3 n} \sin v_{n} x\right) \tag{13}
\end{equation*}
$$

where $k_{n}=\sqrt[3]{\lambda_{n}}, v_{n}=\frac{\sqrt{3}}{2} k_{n}, C_{i n}(i=1,2,3)$ are arbitrary constants.
Then the function

$$
U_{n}(x, y)=X_{n}(x) Y_{n}(y)
$$

satisfies the equation and conditions (2).
By virtue of linearity and homogeneity of the equation (1), the sum of particular
Solutions

$$
\begin{equation*}
U(x, y)=\sum_{n=1}^{\infty} X_{n}(x) Y_{n}(y) \tag{14}
\end{equation*}
$$

will be also the solution of (1).
The function $U(x, y)$, represented by the series (14), satisfies conditions (2) since all the members of the series satisfy them.
Satisfying the boundary conditions (3), we obtain

$$
\left.\begin{array}{l}
U_{x x}(0, y)=\varphi_{1}(y)=\sum_{n=1}^{\infty} X_{n}^{\prime \prime}(0) Y_{n}(y), \\
U_{x}(a, y)=\varphi_{2}(y)=\sum_{n=1}^{\infty} X_{n}^{\prime}(a) Y_{n}(y), \tag{15}\\
U_{x x}(a, y)=\varphi_{3}(y)=\sum_{n=1}^{\infty} X_{n}^{\prime \prime}(a) Y_{n}(y),
\end{array}\right\}
$$

Series (15) are represented the expansion of an arbitrary function $\varphi_{i}(y), i=1,2,3$ eigenvalues of the problem (7). Members $X_{n}^{\prime \prime}(0), X_{n}^{\prime}(a), X_{n}^{\prime \prime}(a)$ are coefficients of this expansion. If functions $\varphi_{i}(y)$ are integrable in the segment $[0, b]$, then the expansion (15) behaves with respect to convergence like an usual Fourier trigonometrical series [11].

For determining coefficients of (15), multiply it on $Y_{m}(y)$ and integrate at limits $[0, b]$, then taking into account orthogonality of the system of functions $Y_{m}(y)$, we obtain

$$
\begin{gathered}
X_{m}^{\prime \prime}(0)=\frac{1}{\left\|Y_{m}\right\|^{2}} \int_{0}^{b} \varphi_{1}(\eta) Y_{m}(\eta) d \eta, X_{m}^{\prime}(a)=\frac{1}{\left\|Y_{m}\right\|^{2}} \int_{0}^{b} \varphi_{2}(\eta) Y_{m}(\eta) d \eta \\
X_{m}^{\prime \prime}(a)=\frac{1}{\left\|Y_{m}\right\|^{2}} \int_{0}^{b} \varphi_{3}(\eta) Y_{m}(\eta) d \eta
\end{gathered}
$$

For convenience, introduce the notations

$$
\begin{equation*}
B_{i n}=\frac{1}{\left\|Y_{n}\right\|^{2}} \int_{0}^{b} \varphi_{i}(\eta) Y_{n}(\eta) d \eta, \quad i=1,2,3 \tag{16}
\end{equation*}
$$

Then we obtain the system of algebraic equations for determinating coefficients $C_{\text {in }}(i=1,2,3)$:

$$
\left\{\begin{array}{l}
k_{n}^{2} C_{1 n}-\frac{1}{2} k_{n}^{2} C_{2 n}+\frac{\sqrt{3}}{2} k_{n}^{2} C_{3 n}=B_{1 n} \tag{17}\\
-k_{n} C_{1 n} e^{-k_{n} a}+k_{n} e^{\frac{1}{2} k_{n} a} \cos \left(v_{n} a+\frac{\pi}{3}\right) C_{2 n}+k_{n} e^{\frac{1}{k_{n} a}} \sin \left(v_{n} a+\frac{\pi}{3}\right) C_{3 n}=B_{2 n} \\
k_{n}^{2} e^{-k_{n} a} C_{1 n}-k_{n}^{2} e^{\frac{1}{2} k_{n} a} \cos \left(v_{n} a-\frac{\pi}{3}\right) C_{2 n}-k_{n}^{2} e^{\frac{1}{2} k_{n} a} \sin \left(v_{n} a-\frac{\pi}{3}\right) C_{3 n}=B_{3 n}
\end{array}\right.
$$

Calculations shows that
$\Delta=\sqrt{3} k_{n}^{5} e^{k_{n} a}\left[\frac{1}{2}-e^{-\frac{3}{2} k_{n} a} \sin \left(v_{n} a-\frac{\pi}{6}\right)\right] \neq 0$.
Solving the system (17), substituting values of $C_{\text {in }}$ in (14), we obtain the solution of Problem A_{α} in the form

$$
\begin{equation*}
U(x, y)=\sum_{n=1}^{\infty}\left[B_{1 n} D_{1 n}(x)+B_{2 n} D_{2 n}(x)+B_{3 n} D_{3 n}(x)\right] Y_{n}(y) \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
& D_{1 n}(x)=\frac{\sqrt{3} k_{n}^{3}}{\Delta}\left[\frac{1}{2} e^{k_{n}(a-x)}+e^{-\frac{1}{2} k_{n}(a-x)} \cos \left(v_{n} a-v_{n} x\right)\right], \\
& D_{2 n}(x)=\frac{k_{n}^{4}}{\Delta}\left\{-e^{\frac{1}{2} k_{n}(a-2 x)} \sin v_{n} a-e^{-k_{n}\left(a-\frac{1}{2} x\right)}\left[\sin \left(v_{n} a+\frac{\pi}{3}\right)+e^{\frac{3}{2} k_{n} a} \sin \left(v_{n}(a-x)-\frac{\pi}{3}\right)\right]\right\}, \\
& D_{3 n}(x)=\frac{k_{n}^{3}}{\Delta}\left\{-e^{\frac{1}{2} k_{n}(a-2 x)} \cos \left(v_{n} a+\frac{\pi}{6}\right)-e^{-k_{n}\left(a-\frac{1}{2} x\right)}\left[\sin \left(v_{n} a+\frac{\pi}{3}\right)+e^{\frac{3}{2} k_{n} a} \sin \left(v_{n}(a-x)-\frac{\pi}{3}\right)\right]\right\} .
\end{aligned}
$$

Let's prove the uniform convergence of the series (18) with respect to both variables.
Let $\left(x_{0}, y_{0}\right)$ be an arbitrary point of the domain D. Then
$U\left(x_{0}, y_{0}\right)=\sum_{n=1}^{\infty} B_{1 n} D_{1 n}\left(x_{0}\right) Y_{n}\left(y_{0}\right)+\sum_{n=1}^{\infty} B_{2 n} D_{2 n}\left(x_{0}\right) Y_{n}\left(y_{0}\right)+\sum_{n=1}^{\infty} B_{3 n} D_{3 n}\left(x_{0}\right) Y_{n}\left(y_{0}\right)$
what follows
$\left|U\left(x_{0}, y_{0}\right)\right| \leq \sum_{n=1}^{\infty}\left|B_{1 n} Y_{n}\left(y_{0}\right)\right|\left|D_{1 n}\left(x_{0}\right)\right|+\sum_{n=1}^{\infty}\left|B_{2 n} Y_{n}\left(y_{0}\right)\right|\left|D_{2 n}\left(x_{0}\right)\right|+\sum_{n=1}^{\infty}\left|B_{3 n} Y_{n}\left(y_{0}\right)\right|\left|D_{3 n}\left(x_{0}\right)\right|$.
Denoting
$\vartheta_{i}\left(x_{0}, y_{0}\right)=\sum_{n=1}^{\infty} B_{i n} D_{i n}\left(x_{0}\right) Y_{n}\left(y_{0}\right)$,
we have
$\left|\vartheta_{i}\left(x_{0}, y_{0}\right)\right| \leq \sum_{n=1}^{\infty}\left|B_{i n} Y_{n}\left(y_{0}\right)\right|\left|D_{i n}\left(x_{0}\right)\right|, \quad i=1,2,3$.
Estimate $\left|B_{i n} Y_{n}\left(y_{0}\right)\right|$:
$\left|B_{i n} Y_{n}\left(y_{0}\right)\right| \leq\left|Y_{n}\left(y_{0}\right)\right|\left|B_{i n}\right|=\left|Y_{n}\left(y_{0}\right)\right| \frac{1}{\left\|Y_{n}\right\|^{2}} \int_{0}^{b} \varphi_{i}(\eta) Y_{n}(\eta) d \eta$.
But

$$
\left|Y_{n}\left(y_{0}\right)\right|=\left|\alpha \sin \sqrt{\lambda_{n}} y_{0}-\beta \sqrt{\lambda_{n}} \cos \sqrt{\lambda_{n}} y_{0}\right| \leq|\alpha|+|\beta| \sqrt{\lambda_{n}}
$$

Then we have

$$
\left|B_{i n} Y_{n}\left(y_{0}\right)\right| \leq \frac{\left(|\alpha|+|\beta| \sqrt{\lambda_{n}}\right)^{2}}{\left\|Y_{n}\right\|^{2}} \int_{0}^{b}\left|\varphi_{i}(\eta)\right| d \eta
$$

Let's prove that the expression $\frac{\left(|\alpha|+|\beta| \sqrt{\lambda_{n}}\right)^{2}}{\left\|Y_{n}\right\|^{2}}$ is bounded at

$$
n \rightarrow \infty:
$$

$$
\frac{\left(|\alpha|+|\beta| \sqrt{\lambda_{n}}\right)^{2}}{\left\|Y_{n}\right\|^{2}}=\frac{\alpha^{2}+2|\alpha \beta| \sqrt{\lambda_{n}}+\beta^{2} \lambda_{n}}{\left\|Y_{n}\right\|^{2}}
$$

$$
=\frac{\alpha^{2}+2|\alpha \beta| \sqrt{\lambda_{n}}+\beta^{2} \lambda_{n}}{\frac{1}{2}\left(\alpha^{2} b+\beta^{2} \lambda_{n} b-\alpha \beta\right)+\frac{\beta^{2} \lambda_{n}-\alpha^{2}}{4 \sqrt{\lambda_{n}}} \sin 2 \sqrt{\lambda_{n}} b+\frac{\alpha \beta}{2} \cos 2 \sqrt{\lambda_{n}} b}
$$

$$
=\frac{\frac{\alpha^{2}}{\lambda_{n}}+\frac{2|\alpha \beta|}{\sqrt{\lambda_{n}}}+\beta^{2}}{\frac{1}{2 \lambda_{n}}\left(\alpha^{2} b-\alpha \beta\right)+\frac{1}{2} \beta^{2} b+\left(\frac{\beta^{2}}{4 \sqrt{\lambda_{n}}}-\frac{\alpha^{2}}{4 \lambda_{n} \sqrt{\lambda_{n}}}\right) \sin 2 \sqrt{\lambda_{n}} b+\frac{\alpha \beta}{2 \lambda_{n}} \cos 2 \sqrt{\lambda_{n}} b}
$$

We obtain from here

$$
\lim _{n \rightarrow \infty} \frac{\left(|\alpha|+|\beta| \sqrt{\lambda_{n}}\right)^{2}}{\left\|Y_{n}\right\|^{2}}=\frac{\beta^{2}}{\frac{1}{2} \beta^{2} b}=\frac{2}{b} .
$$

We conclude from this that for any λ_{n},

$$
\left|B_{i n} Y_{n}\left(y_{0}\right)\right| \leq \frac{2}{b} \int_{0}^{b}\left|\varphi_{i}(\eta)\right| d \eta .
$$

Under made suppositions concerning $\varphi_{i}(y)$, the following inequalities

$$
\left|\varphi_{i}(y)\right| \leq \frac{M_{i}}{n^{2}}, i=1,3 \quad\left|\varphi_{2}(y)\right| \leq \frac{M_{i}}{n^{3}}
$$

hold (see [9]). Then

$$
\left|B_{i n} Y_{n}\left(y_{0}\right)\right| \leq \frac{2}{n^{2}} N, \quad i=1,3, \quad\left|B_{2 n} Y_{n}\left(y_{0}\right)\right| \leq \frac{2}{n^{3}} N
$$

where $N=\max M_{i}, i=1,2,3$.
Now estimate the functions $\operatorname{Din}(x 0)$: Calculations show that we obtain the following
estimations:

$$
\begin{aligned}
& \left|D_{1 n}\left(x_{0}\right)\right| \leq \frac{1}{k_{n}^{2}|\bar{\Delta}|}\left[\frac{1}{2} e^{-k_{n} x_{0}}+e^{-\frac{1}{2} k_{n}\left(3 a-x_{0}\right)}\right], \\
& \left|D_{2 n}\left(x_{0}\right)\right| \leq \frac{1}{\sqrt{3} k_{n}|\bar{\Delta}|}\left[e^{-k_{n}\left(\frac{1}{2} a+x_{0}\right)}+e^{-k_{n}\left(2 a-\frac{1}{2} x_{0}\right)}+e^{-\frac{1}{2} k_{n}\left(a-x_{0}\right)}\right], \\
& \left|D_{3 n}\left(x_{0}\right)\right| \leq \frac{1}{\sqrt{3} k_{n}^{2}|\bar{\Delta}|}\left[e^{-k_{n}\left(\frac{1}{2} a+x_{0}\right)}+e^{-k_{n}\left(2 a-\frac{1}{2} x_{0}\right)}+e^{-\frac{1}{2} k_{n}\left(a-x_{0}\right)}\right],
\end{aligned}
$$

where
$\bar{\Delta}=\frac{1}{2}+e^{-\frac{3}{2} k_{n} a} \sin \left(v a-\frac{\pi}{6}\right)$.
Then

$$
\begin{aligned}
\left|\vartheta_{1}\left(x_{0}, y_{0}\right)\right| \leq \sum_{n=1}^{\infty}\left|B_{1 n} Y_{n}\left(y_{0}\right)\right|\left|D_{1 n}\left(x_{0}\right)\right| & \leq \sum_{n=1}^{\infty} \frac{2}{n^{2}} N \frac{1}{k_{n}^{2}|\bar{\Delta}|}\left[\frac{1}{2} e^{-k_{n} x_{0}}+e^{-\frac{1}{2} k_{n}\left(3 a-x_{0}\right)}\right] \\
& \leq C_{1} N \sum_{n=1}^{\infty} \frac{\frac{1}{2} e^{-k_{n} x_{0}}+e^{-\frac{1}{2} k_{n}\left(a-x_{0}\right)}}{n^{\frac{10}{3}}}
\end{aligned}
$$

One can easily be convinced that the series $\vartheta_{1}\left(x_{0}, y_{0}\right)$ converges absolutely. In exactly the same way, absolute convergence of other series in (19) can be proved.

This implies that the series $U\left(x_{0}, y_{0}\right)$ converges absolutely. By virtue of arbitrariness of $\left(x_{0}, y_{0}\right)$, the series (18) converges absolutely in
the domain \bar{D}. And what is more, derivatives with respect to both variables converge since for derivatives with respect to x, the equalities

$$
\begin{aligned}
& D_{1 n}^{(p)}(x) \leq \frac{\sqrt{3}}{\Delta} k_{n}^{p+3}\left\{(-1)^{p} \frac{1}{2} e^{k_{n}(a-x)}+e^{-\frac{1}{2} k_{n}(a-x)} \cos \left[v_{n}(a-x)-p \frac{\pi}{3}\right]\right\}, \\
& D_{2 n}^{(p)}(x) \leq \frac{k_{n}^{p+4}}{\Delta}\left\{\begin{array}{l}
(-1)^{p+1} e^{\frac{1}{e^{2}} k_{n}(a-2 x)} \sin v_{n} a-e^{-\frac{1}{2} k_{n}\left(a-\frac{1}{2} x\right)} \sin \left[\left(v_{n} x+\frac{\pi}{3}\right)+p \frac{\pi}{3}\right] \\
-e^{-\frac{1}{2} k_{n}(a+x)} \sin \left[\left(v_{n}(a-x)-\frac{\pi}{3}\right)-p \frac{\pi}{3}\right]
\end{array}\right\}, \\
& D_{3 n}^{(p)}(x) \leq \frac{k_{n}^{p+3}}{\Delta}\left\{\begin{array}{l}
(-1)^{p+1} e^{\frac{1}{2} k_{n}(a-x)} \cos \left(v_{n} a+\frac{\pi}{3}\right)-e^{-k_{n}\left(a-\frac{1}{2} x\right)} \sin \left[\left(v_{n} x+\frac{\pi}{3}\right)+p \frac{\pi}{3}\right] \\
-e^{-\frac{1}{2} k_{n}(a+x)} \sin \left[\left(v_{n}(a-x)+\frac{\pi}{3}\right)-p \frac{\pi}{3}\right]
\end{array}\right\},
\end{aligned}
$$

hold.
For the functions $D_{i n}^{(p)}(x), i=1,2,3$, the estimations
$\left|D_{1 n}^{(p)}(x)\right| \leq \frac{k_{n}^{p-3}}{|\bar{\Delta}|}\left[\frac{1}{2} e^{-k_{n} x}+e^{-\frac{1}{2} k_{n}(3 a-x)}\right]$,
$\left|D_{2 n}^{(p)}(x)\right| \leq \frac{k_{n}^{p-1}}{\sqrt{3} \mid \bar{\Delta}}\left[e^{-k_{n}\left(\frac{1}{2} a+x\right)}+e^{-k_{n}\left(2 a-\frac{1}{2} x\right)}+e^{-\frac{1}{2} k_{n}(a-x)}\right]$,
$\left|D_{3 n}^{(p)}(x)\right| \leq \frac{k_{n}^{p-2}}{\sqrt{3} \mid \bar{\Delta}}\left[e^{-k_{n}\left(\frac{1}{2} a+x\right)}+e^{-k_{n}\left(2 a-\frac{1}{2} x\right)}+e^{-\frac{1}{2} k_{n}(a-x)}\right]$
are valid where $0<x<a$ and $p=1,2,3$.
Estimate derivates with respect to x :
$\frac{\partial^{3} U}{\partial x^{3}}=\sum_{n=1}^{\infty}\left[B_{1 n} D_{1 n}^{\prime \prime}(x)+B_{2 n} D_{2 n}^{\prime \prime \prime}(x)+B_{3 n} D_{3 n}^{\prime \prime \prime}(x)\right] Y_{n}(y)$,
$\left|\frac{\partial^{3} U}{\partial x^{3}}\right| \leq \sum_{n=1}^{\infty}\left|B_{1 n} Y_{n}\left(y_{0}\right)\right|\left|D_{1 n}^{\prime \prime \prime}\left(x_{0}\right)\right|+\sum_{n=1}^{\infty}\left|B_{2 n} Y_{n}\left(y_{0}\right)\right|\left|D_{2 n}^{\prime \prime \prime}\left(x_{0}\right)\right|+\sum_{n=1}^{\infty}\left|B_{3 n} Y_{n}\left(y_{0}\right)\right|\left|D_{3 n}^{\prime \prime \prime}\left(x_{0}\right)\right|$.
(21)

Then

$$
\begin{aligned}
& \vartheta_{i}^{\prime \prime \prime}\left(x_{0}, y_{0}\right)=\sum_{n=1}^{\infty} B_{i n} D_{i n}^{\prime \prime \prime}\left(x_{0}\right) Y\left(y_{0}\right) \\
& \begin{aligned}
\left|\vartheta_{i}^{\prime \prime \prime}\left(x_{0}, y_{0}\right)\right| \leq \sum_{n=1}^{\infty}\left|B_{i n} Y\left(y_{0}\right)\right|\left|D_{i n}\left(x_{0}\right)\right| & \leq \sum_{n=1}^{\infty} \frac{2}{n^{2}} N \frac{k_{n}}{|\bar{\Delta}|}\left[\frac{1}{2} e^{-k_{n} x_{0}}+e^{-\frac{1}{2} k_{n}\left(3 a-x_{0}\right)}\right] \\
& =C_{2} N \sum_{n=1}^{\infty} \frac{\frac{1}{2} e^{-k_{n} x_{0}}+e^{-\frac{1}{2} k_{n}\left(3 a-x_{0}\right)}}{n^{\frac{4}{3}}}
\end{aligned}
\end{aligned}
$$

This series converges that's why the series $\vartheta_{i}^{\prime \prime \prime}\left(x_{0}, y_{0}\right)$ converges absolutely. By the same way one can prove absolute convergence of other series in (21). Since $\frac{\partial^{3} U}{\partial x^{3}}=\frac{\partial^{2} U}{\partial y^{2}}$, the absolute convergence of the second derivative with respect to y of the series (18) can beproved analogously.

In all the expressions $D_{i n}^{(p)}(x)$ for $p=3$, the identity
$D_{\text {in }}^{(3)}(x)+\lambda_{n} D_{i n}(x)=0, \quad i=1,2,3$
is valid.
For the function $D_{i n}(x)$, the identity
$\left[\begin{array}{lll}D_{1 n}^{\prime \prime}(0) & D_{1 n}^{\prime}(a) & D_{1 n}^{\prime \prime}(a) \\ D_{2 n}^{\prime \prime}(0) & D_{2 n}^{\prime}(a) & D_{2 n}^{\prime \prime}(a) \\ D_{3 n}^{\prime \prime}(0) & D_{3 n}^{\prime}(a) & D_{3 n}^{\prime \prime}(a)\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
holds which is verified immediately.
Thus, we have proved the following

Theorem 2. If $\varphi_{i}(y) \in C^{1}[0, b], i=1,3, \varphi_{2}(y) \in C^{2}[0, b]$, and $\varphi_{j}(0)=\varphi_{j}(b)=0, j=1,2,3$, then the solution of Problem A_{α} exists and is represented by the series (18).

Substituting values of $B_{i n}$ from (16) in (18), we obtain the solution of Problem A_{α} in the form

$$
U(x, y)=\int_{0}^{b} K_{1}(x, y, \eta) \varphi_{1}(\eta) d \eta+\int_{0}^{b} K_{2}(x, y, \eta) \varphi_{2}(\eta) d \eta+\int_{0}^{b} K_{3}(x, y, \eta) \varphi_{3}(\eta) d \eta
$$

where

$$
K_{i}(x, y, \eta)=\sum_{n=1}^{\infty} D_{i n} \frac{1}{\left\|Y_{n}\right\|^{2}} Y_{n}(\eta) Y_{n}(y) .
$$

References

[1]. Abdinazarov S. On a third-order equation. Izvestiya AN UzSSR, ser. phys.-mat., No. 6 (1989). p.3-6 (in Russian)
[2]. Abdinazarov S., Artikov M. On a boundary value problem for the mixed third-order
[3]. equation with multiple characteristics. Proceedings of Intern, Scient. Conference "Partial ifferential equations and related problems of analysis and informatics'. Tashkent, November, 1619, 2004. Volume 1, p.12-17 (in Russian)
[4]. Apakov Yu.P. On a boundary value problem for the mixed thirdorder equation with multiple characteristics. Materials of III Intern. Conference "Non-local boundary value problems and related problems of mathematical biology, informatics and physics". Nalchik, December, 5-8, 2006. p.37-39 (in Russian)
[5]. Apakov Yu.P. On a problem for the mixed third-order equation with multiple characteristics. In: "Investigations on IntegroDifferential Equations". Issue 35. Bishkek, Ilim, 2006. p.246-247. (in Russian)
[6]. Apakov Yu.P. Solving boundary value problems for the thirdorder equation with multiple characteristics by the method of separation of variables. Uzbek Math. Journal, No. 1 (2007), p.14-23 (in Russian)
[7]. Block H. Sur les equations linares aux derivees partielles a carateristiques multiples. I e II. Arciv for Mat. Astr. Och. Fyzik, Bd. 7 (1912) e (specialmente) III. Ibidem Bd. 8 (1913). p. 3-20.
[8]. Cattabriga L. Potenziali di linea e di domino per equazioni non parabpliche in due variabili e caratteristiche multiple. Rendiconti del seminario matimatico della univ. di Padova, vol. 31 (1961), p. 1-45.
[9]. Khoshimov A.R. On a problem for the mixed equation with multiple characteristics. Uzbek Math. Journal, No. 2 (1995). p.93-97 (in Russian)
[10]. Kudryavtsev L.D. Course of Mathematical Analysis. Vol.3. Sec. Edt. Moscow, Vysshaya shkola, 1988, 352 p. (in Russian)
[11]. Tikhonov A.N., Samarskiy A.A. Equations of Mathematical Physics. Moscow, Nauka, 1977, 735 p (in Russian)
[12]. Titchmarsh E.Ch. Expansions by Eigenvalues Connected with Second Order Differential Equations. Vol.1. Moscow, IL, 1960, 276 p. (in Russian)
[13] Del Vecchio E. Sulle equazioni $Z_{x x x}-Z_{y}+\varphi_{1}(x, y)=0, Z_{x x x}-Z_{y y}+\varphi_{2}(x, y)=0$. Memorie R. Accad. Sci. Torino, (2) (1915).
[14]. Del Vecchio E. Sur deux problemes d'integration pour les equations paraboliques $Z_{\xi \xi \xi}-Z_{\eta}=0, Z_{\xi \xi \xi}-Z_{\eta \eta}=0$. H.Block. Remarque a la note precedente. Arkiv for Mat. Astr. Och. Fyz., Bd.II (1916).

