T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YENİ 6-BROMOPİKOLİNİK ASİTİN Mn(II) ve Zn(II) KOMPLEKSLERİNİN SENTEZİ, YAPISAL, SPEKTROSKOPİK, ELEKTRONİK VE DOĞRUSAL OLMAYAN OPTİK ÖZELİKLERİNİN İNCELENMESİ

YÜKSEK LİSANS TEZİ Yalda SAEEDİ

Enstitü Anabilim Dalı

: FİZİK

Tez Danışmanı

: Prof. Dr. Davut AVCI

Ekim 2021

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YENİ 6-BROMOPİKOLİNİK ASİTİN Mn(II) ve Zn(II) KOMPLEKSLERİNİN SENTEZİ, YAPISAL, SPEKTROSKOPİK, ELEKTRONİK VE DOĞRUSAL OLMAYAN OPTİK ÖZELİKLERİNİN İNCELENMESİ

YÜKSEK LİSANS TEZİ

Yalda SAEEDİ

Enstitü Anabilim Dalı : FİZİK

Bu tez .../.../.... tarihinde aşağıdaki jüri tarafından oybirliği / oyçokluğu ile kabul edilmiştir.

Jüri Başkanı

Üye

Üye

BEYAN

Tez içindeki tüm verilerin akademik kurallar çerçevesinde tarafımdan elde edildiğini, görsel ve yazılı tüm bilgi ve sonuçların akademik ve etik kurallara uygun şekilde sunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta bulunulduğunu, tezde yer alan verilerin bu üniversite veya başka bir üniversitede herhangi bir tez çalışmasında kullanılmadığını beyan ederim.

Yalda SAEEDİ 25.10.2021

TEŞEKKÜR

Yüksek lisans eğitimim boyunca değerli bilgi ve deneyimlerinden yararlandığım, her konuda bilgi ve desteğini almaktan çekinmediğim, araştırmanın planlanmasından yazılmasına kadar tüm aşamalarında sonsuz desteğini ve yardımlarını esirgemeyen, aynı titizlikte beni yönlendiren çok değerli danışman hocam Prof. Dr. Davut AVCI'ya sonsuz teşekkürlerimi sunarım.

Laboratuar çalışmalarında bilgi, engin tecrübelerini ve yardımlarını esirgemeyen sayın hocalarım Prof. Dr. Davut AVCI, Öğr. Gör. Dr. Sümeyye BÜYÜKKAZAZ ve Doç.Dr. Ömer TAMER'e, ayrıca bilgi ve deneyimlerini aktaran ve çalışmalarımız boyunca destek olan sayın hocalarım Prof. Dr. Adil BAŞOĞLU ve Prof. Dr. Yusuf ATALAY'a teşekkür ederim.

Kristal yapı analizleri için Ondokuz Mayıs Üniversitesi Fen Edebiyat Fakültesi öğretim üyesi Doç. Dr. Necmi DEGE'ye teşekkür ediyorum.

Eğitimim boyunca maddi ve manevi desteğini hiçbir zaman esirgemeyen sevgili aileme sonsuz teşekkürlerimi sunarım.

Bu çalışma Sakarya Üniversitesi Bilimsel Araştırma Projeleri Komisyonu tarafından desteklenmiştir (Proje no: 2019-7-24-161).

İÇİNDEKİLER

TEŞEKKÜR	i
İÇİNDEKİLER	ii
SİMGELER VE KISALTMALAR LİSTESİ	iv
ŞEKİLLER LİSTESİ	vii
TABLOLAR LİSTESİ	ix
ÖZET	Х
SUMMARY	xi

BÖLÜM 1.

GİRİŞ	1
1.1. Karboksilik Asitler	1

BÖLÜM 2.

2.1. Elektromanyetik Spektrum ve Bölgeleri62.1.1. X-ışınları72.1.2. Fourier transform IR spektroskopisi (FTIR)82.1.3. UV-Vis spektroskopisi92.1.3.1. Elektronik geçişler102.2. Kuramsal Yöntemler112.2.1. Temel bilgiler112.2.2. Yoğunluk fonksiyon teorisi (Density Functional Theory: DFT)122.2.3. HSEh1PBE (HSE06) yöntemi132.2.4. Temel setler14	DENEYSEL VE KURAMSAL YÖNTEMLER	6
2.1.1. X-ışınları 7 2.1.2. Fourier transform IR spektroskopisi (FTIR) 8 2.1.3. UV-Vis spektroskopisi 9 2.1.3.1. Elektronik geçişler 10 2.2. Kuramsal Yöntemler 11 2.2.1. Temel bilgiler 11 2.2.2. Yoğunluk fonksiyon teorisi (Density Functional Theory: 12 DFT) 12 2.2.3. HSEh1PBE (HSE06) yöntemi 13 2.2.4. Temel setler 14	2.1. Elektromanyetik Spektrum ve Bölgeleri	6
2.1.2. Fourier transform IR spektroskopisi (FTIR)82.1.3. UV-Vis spektroskopisi92.1.3.1. Elektronik geçişler102.2. Kuramsal Yöntemler112.2.1. Temel bilgiler112.2.2. Yoğunluk fonksiyon teorisi (Density Functional Theory: DFT)122.2.3. HSEh1PBE (HSE06) yöntemi132.2.4. Temel setler14	2.1.1. X-ışınları	7
2.1.3. UV-Vis spektroskopisi92.1.3.1. Elektronik geçişler102.2. Kuramsal Yöntemler112.2.1. Temel bilgiler112.2.2. Yoğunluk fonksiyon teorisi (Density Functional Theory: DFT)122.2.3. HSEh1PBE (HSE06) yöntemi132.2.4. Temel setler14	2.1.2. Fourier transform IR spektroskopisi (FTIR)	8
2.1.3.1. Elektronik geçişler102.2. Kuramsal Yöntemler112.2.1. Temel bilgiler112.2.2. Yoğunluk fonksiyon teorisi (Density Functional Theory: DFT)122.2.3. HSEh1PBE (HSE06) yöntemi132.2.4. Temel setler14	2.1.3. UV-Vis spektroskopisi	9
2.2. Kuramsal Yöntemler112.2.1. Temel bilgiler112.2.2. Yoğunluk fonksiyon teorisi (Density Functional Theory: DFT)122.2.3. HSEh1PBE (HSE06) yöntemi132.2.4. Temel setler14	2.1.3.1. Elektronik geçişler	10
2.2.1. Temel bilgiler112.2.2. Yoğunluk fonksiyon teorisi (Density Functional Theory: DFT).122.2.3. HSEh1PBE (HSE06) yöntemi132.2.4. Temel setler14	2.2. Kuramsal Yöntemler	11
2.2.2. Yoğunluk fonksiyon teorisi (Density Functional Theory: DFT)	2.2.1. Temel bilgiler	11
DFT)	2.2.2. Yoğunluk fonksiyon teorisi (Density Functional Theory:	
2.2.3. HSEh1PBE (HSE06) yöntemi 13 2.2.4. Temel setler 14	DFT)	12
2.2.4. Temel setler 14	2.2.3. HSEh1PBE (HSE06) yöntemi	13
	2.2.4. Temel setler	14

2.2.5. Kutuplu süreklilik modeli (polarizable continuum model,	
PCM)	15
2.2.6. Gaussian 09W revision D.01 ve GaussView 5 paket	
Programları	17

BÖLÜM 3.

MATERYAL VE YÖNTEM	
3.1. Kimyasallar ve Spektrometreler	18
3.2. 6–Bromopikolinik Asitin (6-BrpicH) Mn(II) ve Zn(II) Metal	
Komplekslerin Sentezi	18
3.3. Hesaplama Yöntemi	19

BÖLÜM 4.

TARTIŞMA VE SONUÇLAR	23
4.1. Kompleks 1 ve 2'nin Yapısal Parametreleri	23
4.2. Kompleks 1 ve 2'nin Titreşim Frekansları	31
4.3. Kompleks 1 ve 2'nin Elektronik ve Optik Spektral Davranışları	39
4.4. Doğrusal ve Doğrusal Olmayan Optik Özellikler	45

BÖLÜM 5.

SONUÇ VE ÖNERİLER	51
-------------------	----

KAYNAKLAR	54
ÖZGEÇMİŞ	62

SİMGELER VE KISALTMALAR LİSTESİ

Å	: Angström
А	: Soğurma
a.u.	: Atomik birim
$\overline{\alpha}$: Ortalama kutuplanabilirlik
α	: Soğurma katsayısı
А	: Soğurma katsayısı
B3LYP	: Lee-Yang-Parr (LYP) korelasyon enerjili 3 parametreli Becke karma
	metodu
BOS	: Beyin omurilik sıvısı
β	: Düzlem içi bükülme
D	: Düzlemler arası mesafe
DFT	: Yoğunluk fonksiyon teorisi
DZ	: İkili–zeta temel set
$E^{(2)}$: Kararlılık enerji
ED	: Elektron yoğunluğu
ESP	: Elektrostatik potansiyel
Eg	: Deneysel bant aralığı
$E_{\rm XC}$: Değiş-tokuş karşılıklı etkileşim enerjisi
$E_X^{\omega PBE,SR}$: Kısa menzil HF değiş–tokuş enerjisi
$E_X^{\omega PBE,LR}$: Uzun menzil HF değiş–tokuş enerjisi
E^{XC}	: Değiş-tokuş ve korelâsyon enerjisi
esu	: CGS birim sisteminde elektrostatik yük birimi
Ε(ρ)	: Elektron yoğunluğunun elektronik enerjisi
eV	: Elektron volt
ε _i	: Kohn-Sham orbital enerjisi
Н	: Kimyasal sertlik

FMO	: Sınır moleküler orbital
FT–IR	: Fourier dönüşümlü kızılötesi spektroskopisi
GTO	: Gaussian tipi orbital
γ	: Düzlem dışı eğilme
G_i	: Çözülenin elektron yoğunluğuna bağlıdır
HF	: Hartree Fock
HSE	: Heyd-Scuseria-Emzerhof
НОМО	: En yüksek dolu moleküler orbital
hυ	: Foton enerjisi
ICT	: Molekül içi yük transferi
ILCT	: Ligand içi yük transferi
IR	: Kırmızı-altı
χ	: Elektronegatiflik
$\chi^{(1)}$: Birinci dereceden doğrusal optik duyarlılık
$\chi^{(3)}$: Üçüncü dereceden doğrusal olmayan optik duyarlılık
LR	: Uzun menzil
LUMO	: En düşük boş moleküler orbital
М	: Moleküler ağırlık
μ	: Elektrik dipol moment
μ_{eg}	: Geçiş dipol momenti
MEP	: Moleküler elektrostatik potansiyel
n	: Kırılma indisi
NBO	: Doğal bağ orbitali
NLO	: Doğrusal olmayan optik
Na	: Avogadro sayısı
η	: Kimyasal sertlik
ψ	: Dalga fonksiyonu
PCM	: Kutuplu Süreklilik Modeli (Polarizable Continuum Model)
PED	: Potansiyel enerji dağılımı
pNA	: Para nitro anilin

q_i	: Elektron verici nüfus yoğunluğu
$\rho(r)$: Bir <i>r</i> konumunda tam taban-durumun yük yoğunluğu
ρ	: Moleküler yoğunluk
S	: Kimyasal yumuşaklık
SCF	: Öz uyumlu alan
SR	: Kısa menzil
STO	: Slater tipi orbital
Т	: Geçirgenlik
τ	: Burulma
θ	: Kristal düzlemine gelen x-ışınının düzlem ile yaptığı açı
TD-DFT	: Zamana bağlı yoğunluk fonksiyon teorisi
TZ	: Üçlü–zeta
U_{NN}	: Çekirdek itme enerjisi
UV-Vis	: Mor ötesi-görünür bölge
V	: Molar hacim
$V^{ext}(r)$: Dış potansiyel
XRD	: X-ışını kırınımı

ŞEKİLLER LİSTESİ

Şekil 1.1. Pikolinik asitin şematik çizimi	2
Şekil 1.2. [Cu(6-Brpic) ₂ (H ₂ O)] molekülün %50 olasılıkla elde edilmiş kristal	
yapısı	3
Şekil 1.3. [Co(6-Brpic) ₂ (H ₂ O) ₂]·3H ₂ O kompleksin %50 olasılıkla elde edilmiş	
kristal yapısı	4
Şekil 1.4. [Ni(6-Brpic) ₂ (H ₂ O) ₂]·H ₂ O (2) kompleksin %50 olasılıkla elde edilmiş	
kristal yapısı	4
Şekil 2.1. Bir kristalin paralel düzlemlerinden X – ışınlarının yansıması	7
Şekil 2.2. İnfrared spektrometresinin şematik gösterimi	9
Şekil 3.1. Kompleks 1 ve 2'nin sentezi	19
Şekil 4.1. (a) Kompleks 1 ve 2'nin kristal yapıları ve (b) HSEh1PBE/6-	
311G(d,p)/LanL2DZ yöntemi kullanılarak gaz fazında optimize	
edilmiş kompleks 1 ve 2'nin moleküler yapıları	23
Şekil 4.2. Kompleks 1 ve 2'nin kristal paket yapı diyagramları	28
Şekil 4.3. 4000-400 cm ⁻¹ aralığında kompleks 1 ve 2'nin FT-IR spektrumları	32
Şekil 4.4. Etanol çözücü içinde kaydedilen kompleks 1 ve 2'nin UV-vis	
Spektrumları	39
Şekil 4.5. Etanol çözücü içinde HSEh1PBE metodu ile elde edilen kompleks 1 ve	
2'nin elektronik geçişinde en aktif işgal edilmiş ve kullanılmamış	
moleküler orbitaller	43
Şekil 4.6. (a) Kompleks 1 ve 2 için dalga boyuna (λ) karşılık yüzdelik geçirgenlik	
ve yansıma spektrumları (b) kompleks 1 ve 2 için foton enerjisine	
(E) karşılık (α E) ² grafikleri	44
Şekil 4.7. Etanol çözücü içinde HSEh1PBE metodu ile elde edilen kompleks 1 ve	
2 için moleküler elektrostatik potansiyel (MEP) yüzeyleri	45
Şekil 4.8. Kompleks 1 ve 2 için orta IR bölgedesinde kırılma indis grafikleri	47

Şekil 4.9. (a) Molar kutuplanabilirlik αp ve (b) kompleks 1 ve 2'nin üçüncü	
dereceden doğrusal olmayan optik duyarlılığı $\chi^{(3)}$	48

TABLOLAR LİSTESİ

Tablo 2.1. Elektromanyetik spektrumun bölgeleri	6
Tablo 4.1. Kompleks 1 ve 2 için kristal veriler ve yapı arıtma parametreleri	24
Tablo 4.2. Kompleks 1 ve 2 için seçilmiş deneysel ve teorik bağ uzunlukları ve	
bağ açıları	25
Tablo 4.3. Kompleks 1 ve 2 için (Å ve °) hidrojen bağı parametreleri	28
Tablo 4.4. Kompleks 1 ve 2 için NBO bazında Fock matrisinin ikinci derece	
pertürbasyon teorisi analizi	29
Tablo 4.5. Kompleks 1 ve 2 için FT-IR ve hesaplanan titreşim frekanslarının	
karşılaştırılması	35
Tablo 4.6. Kompleks 1 ve 2'nin elektronik ve optik spektral davranışları	40
Tablo 4.7. Kompleks 1 ve 2 için temel hal dipol momenti (μ_g , Debye), ortalama	
doğrusal kutuplanabilirlik (‹a›, 10 ⁻²⁴ esu), kırılma indisi (n), doğrusal	
optik duyarlılık ($\chi^{(1)}$, 10 ⁻² esu), yönelime bağlı doğrusal	
kutuplanabilirlik ($\Delta \alpha$, 10 ⁻²⁴ esu), ortalama birinci ve ikinci dereceden	
yüksek kutuplanabilirlik ($\langle\beta\rangle$, 10 ⁻³⁰ ve $\langle\gamma\rangle$, 10 ⁻³⁶ esu), üçüncü derecen	
doğrusal olmayan optik duyarlılık ($\chi^{(3)}$, 10 ⁻¹³ esu)	49

ÖZET

Anahtar kelimeler: 6-Bromopikolinik asit, Sentez, X-Işını Kırınımı, IR, UV-Vis, NBO, Optik band gap, NLO, DFT/TD-DFT.

Bu tez çalışmasında, 6-bromopikolinik asitin Mn(II) ve Zn(II) kompleksleri {[Mn(6-Brpic)₂(H₂O)₂] (1) ve [Zn(6-Brpic)₂(H₂O)₂·H₂O] (2)} sentezlenmiş ve bu komplekslerin kristal yapılarının bozulmuş oktahedral geometrili koordinasyon küresine sahip yapılar olduğu X-ışını kırınımı yöntemi ile tayin edilmiştir.

Sentezlenen komplekslerin titreşimsel, elektronik ve optik spektral özellikleri FT-IR ve UV-Vis spektrumları aracılığıyla incelenmiştir. Kuramsal hesaplamalar Gaussian 09W, Revision D.01 ile GaussView 5 paket programı kullanılarak yapılmıştır. DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ yöntemi kullanılarak geometrik parametreler (bağ uzunlukları, bağ ve düzlem açıları) ve titreşim frekansları hesaplanmıştır. Elektronik soğurma dalga boyları, osilatör şiddetleri, geçiş dipol momentleri TD-DFT/ HSEh1PBE/6-311G(d,p)/LanL2DZ yöntemi kullanılarak elde edilmiştir. Ayrıca, SWizard ve Chemissian programları kullanılarak sırasıyla elektronik geçişlere moleküler orbitallerden gelen önemli katkılar ve moleküler orbitallerdeki ligand ve metal iyonunun yüzdelik oranları belirlenmiştir. Komplekslerin hesaplanan sınır moleküler orbitallerinden elektronegatiflik, kimyasal sertlik ve yumuşaklık gibi moleküler parametreler tayin edilmiştir. Komplekslerde bağlar arası etkileşimler, metal iyonların koordinasyon çevresi ve konjugatif etkileşimler doğal bağ orbital (NBO) analizi ile belirlenmiştir. DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ yöntemi kullanılarak dipol moment (μ_g), ortalama ve yönelime bağlı kutuplanabilirlik ($\overline{\alpha}$ ve $\Delta \alpha$), krılma indisi (*n*), doğrusal ve üçüncü dereceden doğrusal olmayan optik duyarlılık ($\chi^{(1)}$ ve $\chi^{(3)}$), ikinci ve üçüncü dereceden doğrusal olmayan optik (β ve γ) parametreleri hesaplanmıştır. Ayrıca, orta IR bölgesinde komplekslerin *n* değerleri, UV-Vis bölgesinde (200-800 nm) $\chi^{(3)}$ değerleri deneysel olarak incelenmiştir. 6-bromopikolinik asitin Mn(II) ve Zn(II) komplekslerinin kuramsal olarak hesaplanan karşılığı bulunan tüm deneysel parametrelerde yapıözellik ilişkisi bu tez çalışmasında sunulmuştur.

INVESTIGATION OF THE SYNTHESIS, STRUCTURAL, SPECTROSCOPIC, ELECTRONIC AND NON-LINEAR OPTICAL PROPERTIES OF THE Mn(II) AND Zn(II) COMPLEXES OF NEW 6-BROMOPICOLINIC ACID

SUMMARY

Keywords: 6-Bromopicolinic acid, Synthesis, X-Ray Diffraction, IR, UV-Vis, NBO, Optical band gap, NLO, DFT/TD-DFT.

In this thesis, Mn(II) and Zn(II) complexes of 6-bromopicolinic acid {[Mn(6-Brpic)₂(H₂O)₂] (1) and [Zn(6-Brpic)₂(H₂O)₂·H₂O] (2)} were synthesized and the crystal structures of these complexes with the distorted octahedral geometry coordination spheres were determined by X-ray diffraction method.

Vibrational, electronic and optical spectral properties of synthesized complexes were investigated by means of FT-IR and UV-Vis spectra. Theoretical calculations were made using Gaussian 09W, Revision D.01 and GaussView 5 package program. Geometrical parameters (bond lengths, bond and dihedral angles) and vibrational frequencies were calculated using the DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ method. Electronic absorption wavelengths, oscillator strengths, transition dipole moments were obtained using the TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ method. In addition, significant contributions from molecular orbitals to electronic transitions and percentile ratios of ligand and metal ion in molecular orbitals were determined by using SWizard and Chemissian programs, respectively. Molecular parameters such as electronegativity, chemical hardness and softness were designated from the calculated frontier molecular orbitals of the complexes. Interactions between bonds, coordination environment of metal ions and conjugative interactions in both complexes were determined by natural bond orbital (NBO) analysis. The ground state dipole moment (μ_g), mean and anisotropy polarizability ($\bar{\alpha}$ and $\Delta \alpha$), refractive index (*n*), linear and third-order nonlinear optical sensitivity ($\chi^{(1)}$ ve $\chi^{(3)}$), second- and thirdorder nonlinear optical (β and γ) parameters were calculated by using the DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ method. Also, the *n* and $\chi^{(3)}$ values of the complexes were experimentally investigated in the middle IR and UV-Vis region (200-800 nm), respectively. The structure-property relationship in all experimental parameters that have the theoretical corresponding results for the Mn(II) and Zn(II) complexes of 6-bromopicolinic acid is presented in this thesis.

BÖLÜM 1. GİRİŞ

1.1. Karboksilik Asitler

Karboksilik asitler yapılarında bir karbonil (C=O) ve bir karboksil (R-O-H) gurubu bulunan organik bileşiklerdir. Günümüzde çeşitli şekillerde karşımızda çıkan karboksilik asit yapılar hücrelerin biyokimyası karboksilik asitler etrafında inşa edilir. Karboksilik asit moleküller hidrojen bağlarıyla birbirlerine bağlanarak demirleşirler bu yüzden kaynama noktaları yüksektir. Bir veya daha fazla karboksilik asit grubuna sahip liganlar farklı modlarda birçok metal ile koordine olurlar [1]. Karboksilik asitler polar molekül olduklarından suda rahat çözünebilirler. Ancak, alkil zincirleri uzadıkça cözünürlükleri azalır. Piridin (C₅H₅N), bazik heterosiklik organik bir bilesiktir. Renksizdir, yanıcıdır, zayıf alkali ve suda çözünen bir sıvıdır. Piridin kavrulmuş kahve, patates cipsi ve diğer kavrulmuş veya konserve yiyeceklerde az miktarda bulunur. Bununla birlikte, piridin türevleri olan vitaminler, nükleotitler ve alkaloidler gibi çok yaygındır. Endüstriyel olarak, piridin, böcek öldürücüler, boyalar ve lastik üretimi için çok önemli bir bileşiktir. Laboratuvarlarda ise piridin temel olarak düşük reaktif, polar ve bazik bir çözücü olarak eliminasyon veya yoğuşma reaksiyonları için kullanılır. Tarihsel olarak, kömür katranından üretilmiş olan ve saf olmayan piridin, hayvan kemikleri ve diğer organik maddelerin ısıtılmasıyla hazırlanmıştır. Bugün ise dünya çapında yılda yaklaşık 20.000 ton sentezlenmektedir [2].

Pikolinik asit (C₅H₄N(CO₂H)), çeşitli biyolojik ortamlarda bulunan altı üyeli halka yapıya sahip organik, suda çözünen beyaz ve katı bir bileşiktir (Şekil 1.1.). Pikolinik asit, N, O verici grupları ile metala bağlanarak beş üyeli şelat halka oluştururlar. Hücre kültürü süpernatanları, kan serumu, beyin omurilik sıvısı (BOS), insan sütü, pankreas suyu ve bağırsak homojenatlarında bulunur. Organik kimyada ise Mitsunobu ve Hammick reaksiyonlarında substrat olarak kullanılır. Pikolinik asitler amino grup

asitin yok edilmesi sırasında vücutta sentezlenir [1,3]. Pikolinik asit, kinürenin yolu boyunca amino asit triptofanın bir katabolitidir.

Şekil 1.1. Pikolinik asitin şematik çizimi.

Bir veya daha fazla karboksilik asit grubu ve/veya piridin karboksilik asitlerin hidroksi türevleri gibi diğer asidik gruplar içeren organik moleküller, çeşitli modlarda birçok metal merkezine koordine olmasıyla çok boyutlu koordinasyon polimerlerinin sentezi için yaygın olarak kullanılmıştır [4-6]. Bu ligandların pek çok geçiş metal kompleksi, ligandların büyük koordinasyon potansiyelleri ve ayrıca biyolojik önemleri nedeniyle yoğun bir şekilde araştırılmıştır [2-10]. Son zamanlarda, pikolinik asitin hidroksi türevlerinin 3d-blok metallere (Co(II), Fe(III) ve Cu(II)) koordinasyon modları araştırılmıştır [4-6].

2008 yılında Kukovec ve çalışma arkadaşları tarafından 6-bromopikolinik asitin Cu(II) [Cu(6-Brpic)₂(H₂O)] kompleksi sentezlemiş (Şekil 1.2.) ve Cu(II) merkez iyonu etrafındaki koordinasyonun etkileşimi, hidrojen bağ ve 3D süpramoleküler yapılardaki $\pi \dots \pi$ etkileşimi tartışılmıştır [7].

Şekil 1.2. [Cu(6-Brpic)₂(H₂O)] molekülün %50 olasılıkla elde edilmiş kristal yapısı [7].

Bir maddenin birden fazla kristal biçiminde var olma kabiliyeti olan polimorfizm [8-10], biyoyararlanım ve fiziksel özellikler (erime noktası, çözünürlük, yoğunluk, iletkenlik, çözünme hızı vb.) kristal paketlemeye bağlı olabileceğinden ilaç endüstrisi ile her zaman ilgilidir. Aynı zamanda, bir maddenin farklı kristal formlarının farklı özelliklere sahip olabileceği ve farklı bir malzeme olarak davranabileceği bilinen bir gerçektir. Bu kavram, bileşiklerin kristalimsi malzemeler (ilaçlar, boyalar, pigmentler, agrokimyasallar ve gıda katkı maddeleri, patlayıcılar vb.) şeklinde üretimi ve ticarileştirilmesiyle ilişkili farklı bilim alanlarında önemli sonuçlara sahiptir. Polimorfik formların kristal yapıları, kristallerde moleküller arası etkileşimler ve kristal ortamının moleküler konformasyon üzerindeki etkisi hakkında önemli bilgiler sağlar. Bu nedenle, çalışmaları rasyonel kristal tasarımı için çok önemlidir.

Kukovec ve arkadaşları 2009 yılında çözelti pH değerinin belirli bir polimorf oluşumu üzerindeki etkisinin bir örneği olarak Co(II) kompleksinin 6-bromopikolinik asit (6-BrpicH) ile kompleksin sentezi (Şekil 1.3.), yapısal, spektroskopik ve termal karakterizasyonunu rapor etmiştir [9].

Şekil 1.3. [Co(6-Brpic)₂(H₂O)₂]·3H₂O kompleksin %50 olasılıkla elde edilmiş kristal yapısı [9].

Kukovec ve arkadaşları 2009 yılında $[Ni(6-Brpic)_2(H_2O)_2] \cdot 3H_2O$ (1) ve $[Ni(6-Brpic)_2(H_2O)_2] \cdot H_2O$ (2) (Şekil 1.4.) bromopikolinik asit ile komplekslenmiş iki nikel(II) psödopolimorfizm elde etmiştir [10].

Şekil 1.4. [Ni(6-Brpic)₂(H₂O)₂]·H₂O (2) kompleksin %50 olasılıkla elde edilmiş kristal yapısı [10].

Bu çalışmada, 6–bromopikolinik asit (6-BrpicH)'in mangan (Mn) ve çinko (Zn) metal kompleksleri {[Mn(6-Brpic)₂(H₂O)₂] ve [Zn(6-Brpic)₂(H₂O)₂]·H₂O} ilk kez sentezlenmiş ve tek kristal yapıları elde edilmiştir. Sentezlenen komplekslerin tek kristal yapıları XRD tekniği ile aydınlatılmış, titreşim ve elektronik özellikleri FT–IR, UV–Vis spektroskopik yöntemlerle incelenmiştir. Bu deneysel çalışmalara ek olarak, sentezlenen bu kompleksler için DFT/HSEh1PBE/6–311G(d,p)/LanL2DZ metodu kullanılarak yapısal, titreşim, elektronik özellikler ve ayrıca ikinci ve üçüncü mertebeden doğrusal olmayan optik parametreler hesaplanmıştır. Kuramsal olarak hesaplanan karşılığı olan tüm deneysel parametrelerde yapı-özellik ilişkisi bu tez çalışmasında ilk kez yapılmıştır. Bu tez kapsamında elde edilen sonuçların bir kısmı çalışma grubumuz tarafından 2021 yılında yayımlanmıştır [11].

BÖLÜM 2. DENEYSEL VE KURAMSAL YÖNTEMLER

2.1. Elektromanyetik Spektrum ve Bölgeleri

Elektromanyetik spektrum, bir elektromanyetik dalga olan ışığın frekanslarına (veya dalga boyu) göre sınıflandırılması ile elde edilen ve elektromanyetik ışıma türlerinin hangi frekansta ışıma yaptığını gösteren diyagramdır. Hayatımızın her alanında karşımıza çıkan elektromanyetik spektrumun, yalnızca (400-800 nm) dalga boyundaki aralığı gözümüz tarafından algılanabilirken, spektrumun geri kalan bölümü hayatımızdaki çeşitli uygulamalarda karşımıza çıkmaktadır. Bu bağlamda, özellikle xışını, morötesi, görünür ve kızılötesi dalga boyları malzemelerin analizinde çeşitli yöntemler ile kullanılırken, mikrodalga ışıması malzemelerin sentezlenmesi teknolojisinde, radyo dalgaları ışıması radyo ve televizyon yayınlarının oluşumunda, gama ışınları ise tıpta ışın tedavisi (radyoterapi) gibi uygulamalarda kullanılmaktadır.

Elektromanyetik spektrum içerisinde özellikle x-ışını, morötesi, görünür ve kızılötesi dalga boylarına ait spektrumlar, malzemelerin analizinde geliştirilen çeşitli cihazlar vasıtasıyla günümüzde yoğun olarak kullanılmaktadır.

Bölge	Spektroskopi	Frekans (Hz)	Dalga boyu (λ)
Radyo frekans	NMR, NQR	$3x10^{6}-3x10^{8}$	10m-100 cm
Moleküler dönme enerji geçişleri	ESR, moleküler dönme	3x10 ⁸ -3x10 ¹²	100cm-100µm
Kırmızı altı	Moleküler dönme, Moleküler titreşim	3x10 ¹² -3x10 ¹⁴	100µm-1µm
Görünür bölge ve mor ötesi	Elektronik geçişler, (dış kabuk elektronu)	3x10 ¹⁴ -3x10 ¹⁶	1 μm – 10 nm
X-Işınları	Elektronik geçişler (İç kabuk elektronları)	3x10 ¹⁶ -3x10 ¹⁸	10 nm – 100 pm
γ (Gama) ışınları	Nükleer geçişler	3x10 ¹⁸ -3x10 ²²	100 pm - 0,1 pm

Tablo 2.1. Elektromanyetik spektrumun bölgeleri [12].

2.1.1. X-ışınları

X-ışınları elektromanyetik spektrumda dalga boyu yaklaşık 0,01 ile 10 nm arasındaki ışımayı temsil etmektedir. Sahip olduğu enerji seviyesi ve dalga boyunun atomlar arası mesafe mertebesinde olması, x-ışınlarının malzemelerin kristal yapıları hakkında bilgi edinilmesinde kullanılmasına imkân sağlamaktadır. Bu amaçla, X-ışınları, malzemelerdeki fazlar, kristal yönlenmeleri, kristalinite miktarı, tane boyutu, gerinim ve kusurlar hakkında doğrudan veya dolaylı olarak bilgiler vermektedir [1].

X-ışınlarının malzemelerin analizinde kullanılması, dalga karakteristiği gösteren ışığın girişim yapabilmesi ile mümkün olabilmektedir. Buna göre, x-ışınları, kristal içerisindeki farklı düzlemlerden yansımasında eşitlik 2.1'de belirtilen ifade doğrultusunda yapıcı (constructive) veya yıkıcı (destructive) girişim yapabilmektedir [13].

X-ışınıları demeti kristal yüzeyinde düştüğünde farklı düzlemlerden yansıma yapar. Buna göre her düzlem de küçük bir oranda yansıma meydana gelir ve bu yansıma gelme açısına uygun değer aldığında gözlenir. X-ışınıları dalga boyunun tam katı olması durumunda yapıcı girişim yaparak dedektörde sinyal oluşturmaktadır. Benzer şekilde X-ışınlarının kat ettikleri mesafe farkı (2dsinθ), X-ışını dalga boyunun kesirli katı (1/2, 3/2, 5/2, ...) olması durumunda ise yansıyan X-ışınlarının yıkıcı girişimi ile dedektör de sinyal oluşturmamaktadır. Yapıcı girişim, farklı düzlemlerden saçılmalar arasındaki yol farkının dalga boyunun tam katlarında oluşmaktadır.

Şekil 2.1. Bir kristalin paralel düzlemlerinden X – ışınlarının yansıması [1].

X-ışını parelel örgü düzlemleri arasındaki mesafeyi d ve bu düzlemlere düşen dalga demetini düzlemlerle θ açısı yaptığı düşünülürse, her düzlemden gelen ışının bir miktarını yansıtacaktır (Şekil 2.1.). Farklı düzlemlerden yansıyan X-ışınlarının girişimleri sonucunde kırınım olay ortaya çeker. Bu halda iki komşu düzlemden yansıyan ışınlar arası yol farkı 2dsin θ olur. Ardışık düzlemlerden yansıyan ışınlar arasındaki yol farkı dalga boyunun tam katları olduğunda yapıcı bir girişim oluşur.

$$n\lambda = 2d\sin\theta \ (n = 1, 2, 3, ...)$$
 (2.1)

Burada n yansımanın mertebesini gösteren bu değer büyüdükçe yansıyan ışının şiddeti azalır [14]. Bragg yasası olarak verilen denklem (2.1)'de yansımasının gerçekleşebilmesi için $\lambda \leq 2d$ şartı sağlanmalıdır. Bu durum görünür bölge ışığının kırınım deneylerinde kullanılamamasının nedenidir [15].

2.1.2. Fourier transform (IR) spektroskopisi (FTIR)

X-ışını kırınım analizi ile malzemenin kristal yapısı ve fazlar hakkında bilgi edinilirken, atomik boyutlarda malzemenin lokal çevresi hakkında bilgi edinmesinde FT-IR analizi kullanılmaktadır. Bu amaçla elektromanyetik spektrumdaki kırmızı ötesi ile mikrodalga arasındaki dalga boylarına karşılık gelen yaklaşık dalga boyu 10⁻⁶-10⁻³ nm olan spektrum kullanılmaktadır. FT-IR analizinde kullanılan teknik, malzemenin her dalga boyunda absorbe ettiği ışığın analizine dayanmaktadır. FT-IR analizinde malzeme üzerine farklı dalga boylarına sahip ışık gönderildikten sonra malzeme içerisinden geçen ışık analiz edilerek hangi dalga boylarının malzeme tarafından absorbe edildiginin belirlenmesine dayanmaktadır. Buna göre malzemeye gönderilen ışık malzeme içerisinden geçerken, belirli dalga boyları moleküllerde yer alan çeşitli bağların simetrik, asimetrik, bükülme gibi modları tarafından absorbe edilmektedir. FT-IR spektrumunda ise malzemeden geçen (transmission) ışık analiz edilerek hangi dalga boylarının eksik olduğu belirlenmektedir. Molekül yapıları içerisindeki bu titreşim modaları her malzemede kendine özgü olduğundan FT-IR analizi ile elde edilen spektrum malzemenin karakterizasyonu hakkında değerli bilgiler verebilmektedir. Buna göre, Şekil 2.2'de verilen örnek bir spektrumda elde edilen

pikler malzeme tarafından absorbe edilen dalga boylarını ifade etmektedir. Bu bağlamda her malzemenin atomik lokal çevresine ve moleküler yapılarındaki bağlarına bağlı olarak farklı dalga boyları absorbe edilmektedir [16].

Şekil 2.2. İnfrared spektrometresinin şematik gösterimi [17].

FT-IR analizi malzemelerin karakterizasyonunda XRD tekniğine göre katı, sıvı ve gaz formundaki malzemelerden elde edilebilmesi sebebiyle ön plana çıkan bir tekniktir.

2.1.3. UV-Vis spektroskopisi

Ultraviyole (200-400 nm) ve görünür (400-800 nm) dalga boyundaki ışığın bir örnek içerisinden geçirilmesi sırasında belirli dalga boylarındaki spektrumun malzeme içerisindeki moleküller tarafından absorblanması prensibine dayanmaktadır. Kullanılan ışık kaynağının enerjisi malzemedeki atomların (moleküllerin) dış yörüngesindeki elektronları uyarabilecek mertebededir.

Daha çok kantitatif bir analiz tekniği olan UV-Vis spektroskopisinde hem organik hem de inorganik malzemelerin analizi gerçekleştirilebilmektedir.

2.1.3.1. Elektronik geçişler

 σ , π ve n yörüngeler arasında meydana gelen yüksek enerjili geçişler UV bölgesinde incelenmektedir. Organik moleküllerde σ ve π bağ geçişleri oluşturan atomik yörüngeler σ^* ve π^* karşı bağ yörüngelerini de oluşturmaktadır. n elektronu bağ yapmayan yörüngedeki elektronlardır ve bağ yapmadıkları için karşı bağ orbitaline sahip değillerdir. Elektronik geçişler aşağıdaki şekilde sıralanabilmektedir:

1. $\sigma \rightarrow \sigma^*$ geçişler: Diğer elektronik geçişlere nisbeten gereken enerji oldukça yüksektir ve UV-Vis spektrumunda gözlenemez.

2. $n \rightarrow \sigma^*$ geçişler: Soğurma (absobsiyon) piklerinin çoğu 150-250 nm aralığında yer alan bu geçişler elektron çiftleri içeren ortaklanmamış bileşiklerde gözlenir ve genel olarak $\sigma \rightarrow \sigma^*$ geçişlerinden daha az enerji gerektirir.

3. n $\rightarrow \pi^*$, $\pi \rightarrow \pi^*$ geçişler: 200-700 nm arasındaki bölgede soğurma yaptıklarından UV-Vis spektroskopisinde en fazla karşılaşılan bu geçişler π^* yörüngeleri içerdiği için doymamış fonksiyonel grup içeren organik bileşiklerde gözlenmektedir.

4. d-d geçişleri: Elektromanyetik spektrumun yakın IR, UV ve görünür bölgesinde gerçekleşen bu geçişler koordinasyon komplekslerinde d ve f yörüngeleri arasında gözlenir, atomdan atoma elektron geçişi söz konusu değildir. Genelde ışık soğurması zayıf olan bu geçişlerde metalin d yörüngelerindeki bir elektron aynı metalin diğer bir d orbitaline geçmesi durumudur.

5. Yük aktarım geçişleri: Bu geçişlerde elektron ligandın yörüngesi olan bir molekülün yörüngesinden metal orbitali karakterinde olan diğer bir molekülün yörüngesine (veya aksına) geçmesidir. Bu geçiş neticesinde atomların başlangıç ve son hallerindeki yüklerde önemli değişiklik olur.

Büyük çoğunluğu izinli geçişler olan bu geçişlerin olasılığı fazladır ve ışık soğurması çok şiddetlidir [18].

2.2. Kuramsal Yöntemler

2.2.1. Temel bilgiler

Günümüzde kuantum mekaniğinin birçok uygulaması atom ve moleküller üzerinde yapılmaktadır. Schrödinger denkleminin çözülmesi kuantum mekaniğinde bir molekül sisteminin enerjisini ve ona bağlı olarak diğer özelliklerinin oratya çıkarılmasında önemlidir. Schrödinger denklemi en basit ifadeyle aşağıdaki gibi verilir.

$$H\psi = E\psi \tag{2.2}$$

Schrödinger denkleminin yalnızca hidrojen atomu için tam çözümü yapılabilmekte, çok elektronlu atomlar ya da çok parçacıklı yapılar için tam çözümü yapılamamaktadır. Bundan dolayı, Schrödinger denkleminin çözümü için matematiksel yaklaşımlar kullanılarak yaklaşık çözüm metotları çok elektron ya da çok atom içeren yapılar için geliştirilmiştir. Bu yaklaşıklık metotlar, moleküler mekanik ve elektronik yapı metotları olarak verilebilir. Elektronik yapı metotları, (i) yarı-deneysel ve (ii) ab initio metotları şeklinde verilebilir.

Ab initio metotlarla yapılan hesaplamalarda, kuantum mekaniğinin temel büyüklükleri olan ışık hızı, Planck sabiti, elektronların kütlesi gibi temel fizik sabitleri kullanıldığı için yarı deneysel yöntemlerin tersine deneysel değerlere ihtiyaç duyulmaz. İyi parametreleri olan sistemlerde kabul edilebilir düzeyde yaklaşımlar sunan yarı deneysel yöntemler, ab initio yöntemlere göre daha hızlı sonuç vermektedir. Yarı deneysel yöntemlere göre hesaplama maliyeti bakımından dezavantajlı olan ab initio yöntemler ile incelenen birçok sistemde yüksek verimli sonuçlar elde edilebilmektedir. Günümüzde donanımlı bilgisayarlar kompleks yapıdaki moleküler sistemler için birçok özelliğin ab initio yöntemler kullanılarak hesaplanması kısa sürede yapılmasını sağlamaktadır [19,20].

2.2.2. Yoğunluk fonksiyon teorisi (Density Functional Theory: DFT)

Yoğunluk fonksiyonel teorisi, dramatik bir dalgalanmaya neden olan atomların ve moleküllerin elektronik yapılarına bir yaklaşımdır. Bu teoriye göre temel haldeki elektronik enerji tamamen elektron olasılık yoğunluğu (ρ) ile belirlenir ve bu yoğunluğa bağlı enerji E(ρ) ile tanımlanır. Hohenberg ve Kohn tarafından ilk kez 1964 sistemin taban durum özellikleri tanımlanmıştır ve pratik uygulamasını Hartree-Fock'a benzer şekilde geliştirildi. Bu formülasyonda matematiksel olarak HF orbitallerine benzer şekilde elektron yoğunluğu taban fonksiyonların linner birleşimi olarak ifade edildi. Bir n-elektron sistemin E tam taban-durum elektronik enerjisi [20],

$$E(\rho) = -\frac{\hbar^2}{2m_e} \sum_{i=1}^{n} \psi_i^*(\vec{r}_1) \nabla_1^2 \psi_i(\vec{r}_1) d\vec{r}_1 - \sum_{A=1}^{N} \int \frac{Z_A e^2}{4\pi\varepsilon_0 r_{1A}} \rho(\vec{r}_1) d\vec{r}_1 + \frac{1}{2} \int \frac{\rho(\vec{r}_1)\rho(\vec{r}_2)e^2}{4\pi\varepsilon_0 r_{12}} d\vec{r}_1 d\vec{r}_2 + E_{XC}[\rho]$$
(2.3)

şeklinde yazılabilir. Burada bir-elektron boyutsal orbitalleri $\psi_i = (1,2,...n)$ Kohn-Sham orbitalleridir. Denklemlerin çözümü için şöyle bir yol takip edilir: Bir *r* konumunda tam taban-durumun yük yoğunluğu ρ , [21]

$$\rho(\vec{r}) = \sum_{i=1}^{N} |\psi_i|^2 \tag{2.4}$$

ile gösterilir. Doldurulmuş Kohn-Sham orbitalleri üzerindendir ve bu toplam, orbitaller hesaplandığında bilinir. Burada birinci terim elektronların kinetik enerjisi, ikinci terim elektron çekirdek arası çekici enerji, üçüncü enerji Coulmb etkileşimi, dördüncü terim ise değiş-tokuş karşılıklı etkileşme enerjisidir. Moleküler sisteme ait tüm elektronların etkileşimlerini dikkate alan DFT'nin diğer hesaplama yöntemleri üzerinde bir üstünlük kurmasını sağlayan nedenlerden biri değiş-tokuş ve kolerasyon etkilerini hesaba katmasıdır. Değiş-tokuş kolerasyon enerjisi,

$$E_{XC} = \int dr \rho(r) \varepsilon_{XC} \left[\rho(r) \right]$$
(2.5)

ile yazılabilir. Burada $\varepsilon_{XC}[\rho(r)]$ sabit yoğunluklu bir elektron gazı için her bir elektron için değiş-tokuş kolerasyon enerjisidir. Bir elektron orbitalleri için Kohn-Sham eşitlikleri aşağıdaki gibidir

$$\left\{-\frac{\hbar^2}{2m_e}\nabla_1^2 - \sum_{A=1}^N \frac{Z_A e^2}{4\pi\varepsilon_0 r_{1A}} + \int \frac{\rho(\vec{r}_2)e^2}{4\pi\varepsilon_0 r_{12}} d\vec{r}_2 + V_{XC}(\vec{r}_1)\right\}\psi_i(\vec{r}_1) = \varepsilon_i\psi_i(\vec{r}_1)$$
(2.6)

Burada, ε_i Kohn-Sham orbital enerjisi, V_{XC} değiş-tokuş kolerasyon enerjisidir ve

$$V_{XC}[\rho] = \frac{\delta E_{XC}[\rho]}{\delta \rho}$$
(2.7)

ile yazılır. Eğer E_{XC} bilinirse V_{XC} kolay hesaplanabilir. Kohn ve Sham eşitlikleri bir öz uyumlu alan şeklinde çözülür. İlk başta yük yoğunluğu ρ tahmin edilir. Daha sonra E_{XC} 'nin yoğunluğa bağlılığı için bazı yaklaşımlar kullanılarak bir sonraki durumda r'nin bir fonksiyonu olarak V_{XC} hesaplanıyor. Süreç yoğunluk, değiş-tokuş ve karşılıklı etkileşim enerjisi bir tolerans içinde yakınsayıncaya kadar tekrarlanır, daha sonra elektronik enerji hesaplanır [21].

2.2.3. HSEh1PBE (HSE06) yöntemi

DFT, moleküllerin değiş-tokuş ve korlerasyon enerjilerinde iyi netice vermesi ile tam ve doğru enerji ifadesinin hesaplanması için, yalnız HF ya da DFT modelleri yerine her ikisinin de enerji ifadeleri toplam elektronik enerji ifadesinde kullanılarak karma modeller sunulmuştur. Heyd-Scuseria-Emzerhof (HSE) metodu son dönemlerde değiş-tokuş karşılıklı etkileşim enerji $E_{\rm XC}$ 'yi daha doğru hesaplayabilmek amacı ile geliştirilmiş hibrit yöntemlerden biridir ve HSEH1PBE literatürde HSE06 olarak bilinir [22,23].

HSE, HF'nin uzun menzil (LR) kısmını perdeleme için perdelenmiş Coulomb potansiyelini sadace değiş-dokuş etkileşimine uygulamayı önermektedir. Buna göre, elektronların Coulomb itmesi gibi Hamiltonyenin diğer tüm Coulomb etkileşimleri perdelenmeyecektir. Coulomb operatörü eşitliğin sağ tarafındaki birinci terim kısa menzil (SR) ve ikinci terim uzun menzil (LR) olmak üzere,

$$\frac{1}{r} = \frac{erfc(\omega r)}{r} + \frac{erf(\omega r)}{r}$$
(2.8)

İle verilir. Burada $erfc(\omega r) = 1 - erfc(\omega r)$ tamamlayıcı hata fonksiyonudur. Denklemde $\omega = 0$ için LR terimi sıfır olur ve SR terimi tüm Coulomb operatörüne eşit olur, $\omega \rightarrow \infty$ için ise tam tersi olur. HSE fonksiyonunun değiş – tokuş etkileşim enerji ifadesi,

$$E_{XC}^{HSE} = a E_X^{HF,SR}(\omega) + (1-a) E_X^{\omega PBE,SR}(\omega) + E_X^{\omega PBE,LR}(\omega) + E_C^{PBE}$$
(2.9)

şeklinde verilmektedir. Burada, $E_X^{\omega PBE,SR}$ kısa menzil HF değiş – tokuş enerjisi $E_X^{\omega PBE,SR}$ ve $E_X^{\omega PBE,LR}$ PBE değiş – tokuş fonksiyonun kısa ve uzun menzil bileşenleri, ω ayırma parametresidir (splitting parameter) ve *a* sabit parametre (mixing parameter) ve değeri 1/4'tür [24].

2.2.4. Temel setler

Temel set, matematiksel olarak atomik yörüngelerin ifade edilmesidir. Moleküler yapı tayininde kuantum mekaniksel yöntemleri ne kadar başarılı olsa da, kullanılan yöntemin yanı sıra doğru setin seçimine de bağlıdır. İyi bir temel set moleküle ait yörüngeleri iyi tanımlayarak matematiksel hesaplamalarda kolaylık sağlamalıdır. Genelde atom ve moleküler sistemleri için kullanılan setler Gaussian tipi orbitaller (GTO) ve Slater tipi orbitaller (STO) dir [21].

STO'lar genellikle $e^{-\alpha r}$ ile karakterize ediliyor. HF SCF hesaplamaları, özellikle atomlarda ve küçük moleküllerde çok iyi sonuç verirken, üç veya daha fazla atomlu moleküller için pratik değildir. Ama bu problemi çözmek için Gaussian tipi orbitalleri kullanılır. GTO'lar $e^{-\alpha r^2}$ ile karakterize edildiğinden, elektron itme integrallerinin daha basit hesaplanmasını sağlar. Kartezyen Gauss fonksiyonları,

$$\theta(\vec{r_1} - \vec{r_c}) = (x_1 - x_c)^i (y_1 - y_c)^j (z_1 - z_c)^{k_e - \alpha |\vec{r_1} - \vec{r_c}|^2}$$
(2.10)

şeklinde verilmiştir. Burada r kartezyen koordinatları göstermektedir, i, j, k negatif olmayan tam sayıları ve α pozitif üsteleri gösteriyor. i + j + k = 0 olduğu zaman s-tipi Gaussian orbitali, i + j + k = 1 olduğunda p-tipi Gaussian orbitali ve i + j + k = 2 durumunda d-tipi Gaussian orbitali diye belirtilir. Farklı merkezli iki Gaussian'ın çarpımı olan GTO'ların en önemli avantajı iki merkez arasında bir noktada merkezlenmiş tek bir Gaussian ile belirtilebilir olmasıdır. Yani dört merkezli elektron integralleri iki merkezli integrallere indirgenerek belirtilmektedir [21].

Atomik yörüngelerde yaygın olarak kullanılan temel setlerden ilki olan minimal temel setleri, GTO'ların doğrusal birleşimi kullanımı ile elde edilen basit fonksiyonlara denilmektedir ve STO–nG ile gösterilir. İkincisi split valans (bölünmüş değerlik) temel setleri, minimal temel setlerini açıklamada yeterli değildir, İkili–zeta (DZ) ve Üçlü–zeta (TZ) temel setlerin hesaplama gereksinimi arasında bir uzlaşıdır. Üçüncüsü polarize temel setleri, atom yörüngelerinin polarize karakterini ifade etmek için bölünmüş yörüngelerin açısal momentum kuantum sayısı yüksek Gaussian fonksiyonları eklenerek oluşturulur. Bu fonksiyonlar karbon atomları için d, hidrojen atomları için p ve geçiş metalleri için f sembolleri ile gösterilir [25]. Dördüncüsü difüz temel setleri, elektronları çekirdekten çok uzak olan temel setine sahip sistemlerdir. Difüz temel setleri çiftleşmemiş elektronlara sahip moleküller ve eksi yüke sahip diğer sistemlerde önemlidir. Difüz fonksiyonların varlığı "+" işareti ile belli olur. Temel setine bir artı (+) eklenmiş olduğunda bütün ağır atomlara, iki (++) eklenmiş olduğunda ise hidrojen atomlarına difüz fonksiyonlarının eklendiğini gösterir [27].

2.2.5. Kutuplu süreklilik modeli (polarizable continuum model, PCM)

Tomasi ve Miertus tarafından tavsiye edilen [26] PCM yöntemi molekül için yapılan hesaplamalara çözücü etkisinin incelenmesine olanak sağlamaktdır. Bu yöntemde, çözünen molekül için moleküler yüzey belirlenerek çözücü ile etkileşimi hesaplanır. DFT'de moleküler sistemin toplam enerjisi aşağıdaki eşitlikle verilir.

$$E[\rho^{el}] = \int h(r)\rho^{el}(r)dr + \int V^{ext}(r)\rho^{el}(r)dr + \frac{1}{2} \iint \frac{\rho^{el}(r)\rho^{el}(r')}{|r-r'|} dr dr' + E_{xc}[\rho^{el}] + U_{NN}$$
(2.11)

Burada h(r) kinetik ve çekirdek çekimi, $V^{ext}(r)$ dış potansiyel, U_{NN} çekirdek itme enerjisi ve $E_{xc}[\rho^{el}]$ değiş-tokuş ve karşılıklı etkileşim enerjisidir. G_i çözünenin elektron yoğunluğuna bağlı olan çözünenin serbest enerjisi aşağıdaki gibi yazılabilir.

$$\mathcal{G} = E[\rho^{el}] + G_i[\rho^{el}] \tag{2.12}$$

Kohn-Sham (KS) operatörleri, gaz fazında ve çözücüde molekül için eşitlik (2.11) ve (2.12) kulanılarak hesaplanır.

$$\hat{F}_{KS}^{0}(r) = h(r) + V^{ext}(r) + \int \frac{\rho^{el}(r')}{|r-r'|} dr' + \nu_{XC}[\rho^{el}](r)$$
(2.13)

$$\hat{F}_{KS}(r) = \hat{F}_{KS}^{0}(r) + \nu^{PCM}(r)$$
(2.14)

PCM operatörü aşağda şekilde yazılabilir:

$$\nu^{PCM}(r) = \iint \phi(s)Q(\epsilon;s;s')\frac{1}{|s'-r|}dsds'$$
(2.15)

$$\nu_{XC}[\rho^{el}] = \frac{\delta E_{XC}}{\delta \rho^{el}(r)} \tag{2.16}$$

Elektronik yoğunluk eşitliği, KS operatörünün $\psi_i(r)$ özvektörleri kullanılarak aşağıdaki gibi yazılabilir.

$$\rho^{el}(r) = \sum_{i} n_i |\psi_i(r)|^2$$
(2.17)

Bu eşitlikte n_i orbitalin işgal numarasıdır. Dış potansiyel zamanla değişiyorsa zamana bağlı olarak Kohn-Sham eşitliği [26-29] aşağıdaki gibi yazılır.

$$\left[h(r) + v^{ext}(r,t) + \int \frac{\rho^{el}(r')}{|r-r'|} t dr' + v_{XC}[\rho^{el}](r,t) + v^{PCM}(r,t) \right] \psi_i(r,t)$$

$$= i\hbar \frac{\partial}{\partial t} \psi_i(r,t)$$
(2.18)

Yoğunluğun aniden değişimi ile zamana bağlı olarak benzer yoğunluk fonksiyonu kullanılarak yaygın olarak kullanılan adyabatik yaklaşımı ile $v_{XC}[\rho^{el}](r,t) = v_{XC}[\rho^{el}](r)$ yazılmasına imkân sağlar. Zamana bağlı özelliklerin birçoğu dış potansiyel değişiminin $\delta V(t)$ sonucuna göre elektronik yoğunluğun birinci dereceden değişimine bakılarak hesaplanabilir [20].

2.2.6. Gaussian 09W revision D.01 ve GaussView 5 paket programları

Gaussian 09W Revision D.01 [30] ve GaussView [31] programları kullanılarak, titreşim ve termokimyasal özellikler, moleküler orbitaller ve enerjileri, NMR kimyasal kaymalar, manyetik duyarlılık, kutuplanabilirlik ve yüksek mertebeli kutuplanabilirlik gibi birçok moleküler özellikler çok sayıdaki teorik yöntem ve temel setin seçilmesi ile kuramsal hesaplamalar yapılabilmektedir [32]. Moleküler özellikler gaz fazında ve çözücü içinde uygun metotlarla incelenebilmektedir. Ayrıca, elektronik soğurma parametrelerinde uygun metotlarda uyarılmış hal dikkate alınarak hesaplama

BÖLÜM 3. MATERYAL VE YÖNTEM

3.1. Kimyasallar ve Spektrometreler

Mn(II) ve Zn(II) komplekslerinin sentez sürecinde kullanılan tüm kimyasallar ve çözücüler yüksek saflıkta Sigma–Aldrich'den satın alındı. Sentez işleminde kullanılan ligant ve metal tuzları: 6–Bromopikolinik asit (6-BrpicH), mangan(II) asetat tetrahidrat (Mn(OAc)₂·4H₂O) ve çinko(II) asetat dihidrat (Zn(OAc)₂·2H₂O).

Elde edilen tek kristal kompleks yapılarının belirlenmesinde XRD Stoe IPDS (II) (Stoe Imaging Plate Diffraction System II) cihazı kullanılmıştır. Infrared spektrumları 4000–400 cm⁻¹ aralığında FT–IR Perkin Elmer UATR–TWO (ATR ile donatılmış Perkin Elmer Spektrum–two) spektrofotometre ile alınmıştır. UV–Vis absorpsiyon spektrumları, 900–200 nm aralığında 1 cm'lik kuvars hücresi ile etanol çözüşü içinde SHIMADZU UV–2600 UV–Vis spektrofotometresi kullanılarak kaydedilmiştir.

3.2. 6–Bromopikolinik Asitin (6-BrpicH) Mn(II) ve Zn(II) Metal Komplekslerin Sentezi

İki ayrı beherde hazırlanan 15 ml (1:2 oranında) saf su ve etanol karışımına 6– bromopikolinik asit (6-BrpicH) 2 mmol alınarak eklendi. Bu ligant çözeltilerine Mn(II) asetat tetrahidrat (1 mmol) ve Zn(II) asetat dihidrat (1 mmol) ilave edildi. Son olarak elde edilen kompleks çözeltiler 60°C sıcaklıkta 3 saat karıştırıldıktan sonra oda sıcaklığında buharlaşmaya bırakıldı. 10 gün sonra yeterli büyüklükteki kristal kompleks yapılar çözücü içerisinden süzülerek toplandı. Kompleks **1** ve **2**'nin sentez şeması Şekil 3.1.'de verilmiştir [11].

Şekil 3.1. Kompleks 1 ve 2'nin sentezi.

3.3. Hesaplama Yöntemi

Gaussian (Gauss 09, Revision D.01, 2013 ve Gauss View, version 5) program [30,31], çok sayıda moleküler mekanik, yarı–deneysel ve yoğunluk fonksiyonel teorisi (DFT) gibi yöntemler ve temel set seçeneğine sahip kapsamlı bir moleküler modelleme için kullanılmıştır. Temel halde ve gaz fazında hibrit DFT yöntemi olan HSEh1PBE metodu [22,23] ile C, H, N, ve O atomları için 6–311G(d,p) temel seti [33,34] ve Mn ve Zn için LanL2DZ temel seti [35-37], sentezlenen kompleks 1 ve 2'nin kararlı yapılarını belirlemek ve titreşim frekanslarını hesaplamak için kullanılmıştır. Kompleks 1 ve 2'nin elektronik soğurma (UV–Vis) dalgaboyları, osilatör şiddetleri ve geçiş dipol momentlerini elde etmek için zamana bağlı TD-HSEh1PBE/6-311G(d,p)/LanL2DZ yöntemi [27-29] gaz fazında ve etanol çözücüsünde PCM (Kutuplu Süreklilik Modeli: Polarizable Continuum Model) [26] kullanılmıştır. En yüksek dolu moleküler orbital olan HOMO ve en düşük boş moleküler orbital olan LUMO sınır moleküler orbitallerin enerjileri, HSEh1PBE/6-311G(d,p)/LanL2DZ yöntemi kullanılarak elde edilmiştir. Sınır moleküler orbital enerjileri (FMO) kullanılarak elektronegatiflik (χ), kimyasal sertlik (η) ve kimyasal yumuşaklık (S) parametreleri aşağıdaki denklemler kullanılarak hesaplandı [38-42]. Elektronik geçişlerdeki HOMO ve LUMO orbitallerinden, ligant ve metal iyonlarından gelen önemli katkıları belirlendi [43,44].

$$\eta = \frac{(E_{LUMO} - E_{HOMO})}{2} \tag{3.1}$$

$$\chi = -\frac{(E_{HOMO} + E_{HOMO})}{2} \tag{3.2}$$

$$S = \frac{1}{\eta} \tag{3.3}$$

Komplekslerde bağlar arası etkileşimler, metal iyonların koordinasyon çevresi ve konjugatif etkileşimler doğal bağ orbital (NBO) analizi) [45] yapılarak belirlenmiştir. Her bir donör (i) ve akseptör (j) için kararlılık enerjisi $E^{(2)}$, köşegen matris elemanları ε_i ve ε_j , $F(i, j)^2$ köşegen dışı NBO Fock matris elemanları, q_i alıcı yörünge doluluk oranına bağlı olarak aşağıdaki denklemle hesaplanmıştır [46,47].

$$E^{(2)} = \Delta E_{ij} = q_i \frac{F(i,j)^2}{\varepsilon_i - \varepsilon_j}$$
(3.4)

Gaz fazında ve etanolde Zn(II) kompleksinin mikroskobik doğrusal ve doğrusal olmayan optik davranışlarını tespit etmek için, elektrik dipol momenti (μ), kırılma indisi (n), doğrusal optik parametreler ($\bar{\alpha}$, $\Delta \alpha$ ve $\chi^{(1)}$), ikinci ve üçüncü dereceden doğrusal olmayan optik parametreler (β , γ ve $\chi^{(3)}$) aşağıdaki denklemler kullanılarak HSEh1PBE/6–311G(d,p) yöntemi ile hesaplanmıştır.

Ortama ve yönelime bağlı kutuplanabilirlik ($\overline{\alpha}$ ve $\Delta \alpha$) parametreleri (3.5) ve (3.6) denklemleri kullanılarak elde edildi [48,49].

$$\bar{\alpha} = \frac{(a_{xx} + a_{yy} + a_{zz})}{3} \tag{3.5}$$

$$\Delta a = \left\{ \frac{1}{2} \left[\left(a_{xx} - a_{yy} \right)^2 + \left(a_{yy} - a_{zz} \right)^2 + \left(a_{zz} - a_{xx} \right)^2 \right] \right\}^{1/2}$$
(3.6)

 $\overline{\alpha}$ ve $\Delta \alpha$ 'nın kartezyen bileşenleri: a_{xx} , a_{yy} , a_{zz} 'dir. 1 atomik birim (a.u.), 0,1482×10⁻²⁴ ile çarpılarak elektrostatik yük birime (esu) dönüştürülür.

Gaz fazında ve etanoldeki ortalama ortama kutuplanabilirlik (\bar{a}) değerlerine dayalı teorik kırılma indisi (*n*) değerleri (3.7) Lorentz-Lorenz eşitliği kullanılarak elde edilmiştir [48,49].

$$(n^2-1)/(n^2+2) = D\bar{\alpha}/V$$
 (3.7)

Burada, *n* (kırılma indisi), molar hacim (cm³) *V* 'yi ve Avogadro sayısına (*N*_A) bağlı olarak D çarpanını içerir. $\overline{\alpha} \times 10^{-24}$ cm³, *V* cm³ ve D çarpanı 2,523564179×10²⁴ olarak alınırsa kırılma indisi (3.7) denkleminden boyutsuz olarak doğrudan hesaplanır.

Yerel alan için Lorentz yaklaşımına göre, Mn(II) ve Zn(II) kompleksleri için doğrusal optik duyarlılık ($\chi^{(1)}$) denklem (3.8) kullanılarak hesaplandı [47,49].

$$\chi^{(1)} = \mathrm{Nf}\overline{\alpha} \tag{3.8}$$

Bu denklemde, f (f = $(n^2+3)/3$), Lorentz ifadesine göre yerel alan düzeltme faktörünü, N birim cm³ başına molekül sayısını, $\overline{\alpha}$ ortalama kutuplanabilirlik parametresini göstermektedir.

Mn(II) ve Zn(II) kompleksleri için deneysel teknik kullanılmadan γ parametresiyle ilişkilendirilen $\chi^{(3)}$ (üçüncü derecen doğrusal olmayan optik duyarlılık) parametresi denklem (3.9) kullanılarak bulundu [47,49].

$$\chi^{(3)} = N f^4 \gamma \tag{3.9}$$

Birinci ve ikinci dereceden yüksek kutuplanabilirlik (β ve γ) parametreleri, denklem (3.10) ve (3.11) kullanılarak hesaplandı [48-50].

$$\beta = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2} \tag{3.10}$$

$$<\gamma>=\frac{1}{5}\left[\gamma_{xxxx}+\gamma_{yyyy}+\gamma_{zzzz}+2\left(\gamma_{xxyy}+\gamma_{xxzz}+\gamma_{yyzz}\right)\right]$$
(3.11)

Burada, β 'nın kartezyen bileşenleri: $\beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}$, $\beta_y = \beta_{yyy} + \beta_{yxx} + \beta_{yzz}$, $\beta_z = \beta_{zzz} + \beta_{zyy} + \beta_{zxx}$. β için 1 a.u. 8.6393×10⁻³³ ile çarpılarak esu birimine dönüştürülür.
BÖLÜM 4. TARTIŞMA VE SONUÇLAR

4.1. Kompleks 1 ve 2'nin Yapısal Parametreleri

X ışını kırınım tekniği ile tanımlanan kompleks **1** ve **2**'nin kristal verileri ve arıtma parametreleri Tablo 4.1.'de sunulmuştur [11]. Komplekslerin tek kristal ve temel durumu optimize edilmiş moleküler yapıları Şekil 4. 1.'de verilmiştir [11].

Şekil 4.1.'de görüldüğü gibi, kompleks **1** ve **2** için Mn(II) ve Zn(II) atomları etrafındaki koordinasyon geometrisi, bozuk oktahedral geometri olarak belirlenmiştir. Kompleks **1**, iki 6-Brpic ve iki su ligandı tarafından koordine edilen Mn(II) merkezi iyondan oluşur. Benzer şekilde, kompleks **2**, iki 6-Brpic ve iki su ligandı tarafından koordine edilen merkezi Zn(II) iyonundan oluşmaktadır.

Şekil 4.1. (a) Kompleks 1 ve 2'nin kristal yapıları ve (b) HSEh1PBE/6–311G (d, p)/LanL2DZ yöntemi kullanılarak gaz fazında optimize edilmiş kompleks 1 ve 2'nin moleküler yapıları [11].

	Kompleks 1	Kompleks 2
CCDC Numara	1909814	1916538
Kimyasal formülü	$C_{12}H_{10}Br_2MnN_2O_6$	$C_{12}H_{12}Br_2N_2O_7Zn$
Formül Ağırlığı (akb)	492,98	521,43
Kristal rengi	Renksiz	Beyaz
Kristal sistemi	Monoclinic	Triclinic
Uzay grubu	P21/c	P-1
Sıcaklık (K)	296	296
Radyasyon tipi	Μο Κα	Μο Κα
Dalga boyu (Å)	0,71073	0,71073
Kristal boyutu (mm)	$0,79 \times 0,68 \times 0,59$	$0,72 \times 0,53 \times 0,27$
h, k, l	$-8 \rightarrow 9, -15 \rightarrow 15, -19 \rightarrow 20$	$-9 \rightarrow 8, -13 \rightarrow 13,$
		-24→24
a (Å)	7,3155 (4)	8,0825 (4)
b (Å)	12,8540 (9)	11,2080 (5)
c (Å)	16,9829 (9)	20,1525 (9)
α (°)	90	74,251 (3)°
β (°)	92,359 (4)°	79,264 (4)°
γ (°)	90	71,918 (3)°
$V(Å^3)$	1595,61 (17)	1659,86 (14)
Z	4	4
F(000)	956	1016
Yoğunluk (g cm ⁻³)	2,052	2,087
μ (mm ⁻¹)	5,87	6,33
θ Aralığı (°)	2,0–30,9°	2,0–30,3°
Gözlenen yansıma sayısı	7821	15224
Bağımsız yansıma sayısı	3113	6485
R _{int}	0,062	0,117
S	1,06	1,10
R1/wR2	0,046/0,106	0,091/0,264
mak/min (eÅ ⁻³)	1,07 /0,80	1,86/ -2,43

Tablo 4.1. Kompleks 1 ve 2 için kristal veriler ve yapı arıtma parametreleri [11].

Kompleks 1 ve 2'nin bağ uzunlukları ve açıları karşılaştırmalı olarak Tablo 4.2.'de verilmiştir. Farklı komplekslerde [7,9,10,51,52] daha önce elde edilen parametreler dikkate alınarak, metal iyonu ve koordinasyon modu farklılığına rağmen kompleks 1 ve 2 için merkezi metal iyonları etrafındaki geometrik parametrelerde iyi bir uyum olduğu söylenebilir.

Mn–O2/O3 ve Mn–N1/N2 bağ uzunlukları 2,125 (3)/2,137 (3) ve 2,329 (4) /2,384 (4) Å da kompleks **1** için gözlemlenen, Mn(II) iyon merkezine koordine edilerek beş üyeli şelat halkalarını oluşturur. Aynı şekilde, 2,046 (6) /2,025 (6) ve 2,169 (7) /2,252 (7) Å'da gözlenen kompleks 2 için Zn–O2/O3 ve Zn–N1/N2 bağ uzunlukları beş üyeli şelat halkaları oluşturur. Merkezi Zn(II) iyonuna koordine ederek, kompleks **1** ve **2** için karşılık gelen teorik değerler sırasıyla 1,926-2,093 Å ve 1,975-2,268 Å aralığında elde edildi. Bu şelat halkalarında, kompleks **1** ve **2** için O–Mn–N ve O–Zn–N bağ açılarının değerleri 73,19 (13)/72,51 (12) ve 103,1 (2)/115,9 (3)° olarak bulundu (bkz. Tablo 4.2.).

O-Mn-O/O-Mn-N/N-Mn-N ve O-Zn-O/O-Zn-N/N-Zn-N de kompleks 1 ve 2 için bağ açıları bozuk bir oktahedral geometrisini gösterir. Kompleks 1 için O2-Mn2-O3/O6-Mn2-N2/N1-Mn2-N2 açılarının bir kısmı 165,15 (14), 100,97 (17) ve 91,85 (13)°'da Tablo 4.2.'de görüldüğü gibi elde edilmiştir. Daha önce bildirilen 6-Brpic kompleksleri ile karşılaştırıldığında [7,9,10,52], bu sonuçlar arasında iyi bir uyum olduğu söylenebilir.

Kompleks			Kompleks 2		
Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE
Bağ uzunlukları (A	(Å		Bağ uzunlukları	(Å)	
Br2–C7	1,883 (5)	1,890	Br1-C6	1,895 (11)	1,892
Mn2-O2	2,125 (3)	1,926	Zn1–O3	2,025 (6)	1,975
Mn2-O3	2,137 (3)	1.958	Zn1–O2	2,046 (6)	1,994
Mn2-06	2,159 (4)	2,073	Zn1-O6	2,123 (6)	2,099
Mn2-O5	2,174 (3)	2,140	Zn1–O5	2,140 (6)	3,713
Mn2-N1	2,329 (4)	2,038	Zn1-N1	2,169 (7)	2,183
Mn2-N2	2,384 (4)	2,093	Zn1-N2	2,252 (7)	2,268
Br1-C1	1,883 (5)	1,890	Br2-C12	1,893 (10)	1,893
N1-C1	1,318 (6)	1,337	O2-C1	1,253 (10)	1,280
N1-C5	1,348 (5)	1,361	O3–C7	1,273 (10)	1,283
N2-C7	1,313 (6)	1,331	N1-C6	1,318 (12)	1,323
N2-C11	1,359 (6)	1,355	N1-C2	1,367 (11)	1,344
O1-C6	1,228 (5)	1,214	O1-C1	1,271 (12)	1,215
O4-C12	1,235 (6)	1,214	O4–C7	1,218 (11)	1,215
C5-C4	1,363 (7)	1,380	C8-C9	1,377 (12)	1,384
C5-C6	1,504 (6)	1,513	C8–C7	1,496 (13)	1,527
C11-C10	1,380 (7)	1,381	C9-C10	1,384 (14)	1,386
C1-C2	1,377 (8)	1,389	C6-C5	1,384 (14)	1,390
C2-C3	1,379 (8)	1,385	C3-C4	1,378 (15)	1,386
С10-С9	1,387 (8)	1,387	C4–C5	1,356 (18)	1,386
Bağ açıları (°)			Bağ açıları (°)		
O2-Mn2-O3	165,15 (14)	163,600	O3-Zn1-O2	165,1 (2)	164,925
O2-Mn2-O6	83,45 (14)	51,749	O3-Zn1-O6	90,6 (3)	92,495
O3-Mn2-O6	82,01 (16)	86,483	O2-Zn1-O6	91,7 (3)	73,274
O2-Mn2-O5	97,03 (13)	46,796	O3-Zn1-O5	83,7 (2)	87,872
O3-Mn2-O5	85.77 (13)	75.962	O2-Zn1-O5	81.7 (2)	87.204

Tablo 4.2. Kompleks 1 ve 2 için seçilmiş deneysel ve teorik bağ uzunlukları ve bağ açıları [11].

Kompleks1			Kompleks 2		
Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE
Bağ açıları (°)			Bağ açıları (°)		
O6-Mn2-O5	89,14 (15)	86,521	O6-Zn1-O5	88,0 (3)	90,145
O2-Mn2-N1	72,51 (12)	81,933	O3-Zn1-N1	115,9 (3)	106,451
O3-Mn2-N1	122,25 (14)	109,509	O2-Zn1-N1	79,0 (2)	77,773
O6-Mn2-N1	155,22 (16)	163,283	O6-Zn1-N1	85,3 (3)	89,643
O5-Mn2-N1	87,94 (13)	92,559	O5-Zn1-N1	159,3 (3)	164,952
O2-Mn2-N2	106,81 (13)	111,132	O3-Zn1-N2	77,0 (3)	79,258
O3-Mn2-N2	73,19 (13)	80,399	O2-Zn1-N2	103,1 (3)	115,212
O6-Mn2-N2	100.97 (17)	92,995	O6-Zn1-N2	163,7 (3)	152,235
O5-Mn2-N2	154,93 (13)	156,342	O5-Zn1-N2	100,8 (3)	92,850
N1-Mn2-N2	91,85 (13)	94.450	N1-Zn1-N2	90,7 (3)	94,330
C1-N1-Mn2	130,4 (3)	113,387	C1-O2-Zn1	114,0 (6)	122,074
C5-N1-Mn2	113,1 (3)	110,305	C7-O3-Zn1	117,4 (6)	120,032
C7-N2-C11	116,6 (4)	116,996	C6-N1-C2	117,3 (8)	117,679
C7-N2-Mn2	134,0 (3)	132,574	C6-N1-Zn1	133,1 (7)	134,204
C11-N2-Mn2	109,3 (3)	110,214	C2-N1-Zn1	109,6 (5)	25,457
N1-C5-C4	123,0 (4)	123,424	N2-C8-C7	122,2 (9)	117,567
C4-C5-C6	121,7 (4)	120,394	O4-C7-O3	125,1 (9)	128,241
N2-C11-C10	122,5 (5)	123,071	O4-C7-C8	118,2 (8)	117,880
N2-C11-C12	115,8 (4)	116,656	O3-C7-C8	116,7 (8)	113,878
C10-C11-C12	121,7 (4)	120,272	C8-C9-C10	120,6 (9)	118,738
O1-C6-O2	125,8 (4)	127,975	С8-С9-Н9	119,7	117,859
N2-C7-C8	124,5 (5)	123,855	N1-C2-C1	114,5 (7)	122,298
N2-C7-Br2	117,5 (4)	118,615	C3-C2-C1	123,5 (8)	120,135
C8-C7-Br2	118,0 (4)	117,529	C9-C10-C1	118,6 (8)	76,652
N1-C1-Br1	115,9 (4)	118,815	С11-С10-Н10	120,7	120,010
C2-C1-Br1	119,0 (4)	117,182	N2-C12-C11	125,3 (9)	123,873
O4-C12-O3	126,1 (5)	127,818	N2-C12-Br2	117,6 (6)	118,176
O4-C12-C11	117,8 (5)	119,647	N1-C6-C5	123,1 (10)	123,717
O3-C12-C11	116,1 (4)	112,534	N1-C6-Br1	117,0 (7)	117,669
C1-C2-C3	117,2 (5)	118,772	C5-C6-Br1	119,9 (7)	118,614

Tablo 4.2. (Devamı).

Doğal bağ orbital (NBO) hesaplamalarında hiperkonjugatif etkileşim enerjilerini elde etmek için ikinci dereceden pertürbasyon yaklaşımı uygulanır [53,54]. Stabilizasyon enerjisi olarak tanımlanan $E^{(2)}$ değerleri, bu etkileşimlerin gücünü gösterir. Bağlar arasındaki etkileşimler, metal iyonlarının koordinasyon ortamı ve karmaşık yapılardaki eşlenik etkileşimler, HSEh1PBE/6-311G (d,p)/LanL2DZ düzeyinde hesaplanan kompleks 1 ve 2 için NBO sonuçlarıyla tanımlandı. Tablo 4.4. sırasıyla 82,87 ile 8,44 ve 264,63 ile 8,34 kcal/mol aralığında elde edilen kompleks 1 ve 2 için hesaplanan $E^{(2)}$ değerlerini göstermektedir. Kompleks **1** ve **2** için koordinasyon ortamları, nitrojen/oksijen atomunun yalın çift (n) orbitalleri ile Mn'nin anti-yalın çift (n*) orbitalleri arasındaki delokalizasyon etkisi olarak gözlemlenen $n \rightarrow n^*$ etkileşimleriyle doğrulandı Mn (II) ve Zn(II) iyonları. Kompleks **1** ve **2** için bu etkileşimler, sırasıyla 29,16 ile 9,45 kcal/mol ve 30,66 ile 13,05 kcal/mol aralığında hesaplanan stabilizasyon enerjileri ile elde edildi. Elde edilen sonuçlar, 6-bromopikolinat ve su ligandlarının N ve O atomları aracılığıyla Mn(II) ve Zn(II) iyonlarına koordine olduğunu göstermektedir.

Bu etkileşimleri gösteren Mn(II) ve Zn(II) atomları etrafındaki koordinasyon geometrisi, XRD tekniğinden elde edilen tek kristal yapıları ile doğrulanmıştır. Pikolinat ve 6-metilpikolinatın [56-58] daha önce bildirilen Mn(II) ve Zn(II) komplekslerinin karşılık gelen etkileşimlerinin stabilizasyon enerjilerinin 53,77 ile 19,80 ve 26,36 ile 15,49 kcal/mol aralığında olduğu (Mn kompleksleri için) bulundu ve (Zn kompleksleri için) 49,67 ile 13,53 ve 36,61 ile 27,05 kcal/mol aralığında bulundu.

NBO sonuçlarına göre, kompleks **1**'deki Mn(II) iyonunun elektronik konfigürasyonu, 17,99 çekirdek elektronu, 5,71 değerlik elektronu ve 0,013 ile [çekirdek] 4s^(0,24) 3d^(5,45) 4p^(0,02) 4d^(0,01) olarak elde edilmiştir. Rydberg elektronları 1,28386e'de elde edilen Mn(II) iyonunun doğal yükü, Mn(II)'nin serbest şarj iyonundan (+2) daha düşüktür, bu azalma, Mn(II) iyonundan 6-bromopikolinata yük geçişinin 6-bromopikolinat'tan Mn(II) iyonuna, kompleks **2**'de Zn(II) iyonunun elektronik konfigürasyonu 17,99 çekirdek elektronu, 10,29 değerlik elektronu ve 0,006 Rydberg elektronu ile [çekirdek] 4s^(0,32) 3d^(9,97) 4p^(0,01) olarak hesaplandı. 1,70096e'de hesaplanan Zn(II) iyonunun doğal yükü, Zn(II)'nin serbest şarj iyonundan (+2) daha düşüktür, bu azalma Zn(II) iyonundan 6-bromopikolinata yük geçişini gösterir. Şekil 4.2. ve Tablo 4.3.'te görülebileceği gibi, kompleks **1** ve **2**'nin kristal paketleme yapıları iki su ligandının koordineli O–H bağı ile oksijen atomları arasında O–H…O tipi moleküller arası hidrojen bağlanma etkileşimlerinin olduğunu gösterir. Karboksilat grubunun yanı sıra, 6-Brpik ligandın -CH grubu ile karboksilat grubunun O atomu arasındaki diğer C–H…O tipi hidrojen bağlanma etkileşimlerini göstermektedir.

Şekil 4.2. Kompleks **1** ve **2**'nin kristal paket yapı diyagramları.

-1 and -1 . Normales 1 ve 2 tent (A ve 1 mutoren bag) barametre tent (1 1 1

$D-H \cdot \cdot \cdot A$	D–H	Н…А	D···A	D–H…A	Simetri kodları
Kompleks 1					
O5−H5A…O1 ⁱ	0,86	1,99	2,763 (5)	150	(i) x+1, y, z
O5−H5B…O4 ⁱⁱ	0,86	1,88	2,726 (5)	171	(ii) -x+2, -y+1, -z+1
O6−H6A…O3 ⁱⁱ	0,85	2,00	2,774 (5)	151	(ii) -x+2, -y+1, -z+1
O6−H6B…O2 ⁱⁱⁱ	0,85	2,15	2,670 (5)	120	(iii) −x+1, −y+1, −z+1
$C4-H4\cdots O4^{iv}$	0,93	2,36	3,155 (6)	143	(iv) $x-1$, $-y+1/2$, $z-1/2$
C2-H201 ^v	0,93	2,45	3,245 (6)	144	(v) $-x+1$, $y-1/2$, -z+1/2
Kompleks 2					
$O11\text{-}H11A\cdots O2^i$	0,91	2,07	2,931 (8)	157	(i) x+1, y, z
$O11\text{-}H11B\cdots O5^i$	0,92	2,54	3,077 (9)	118	(ii) x-1, y, z
O11−H11B…O13	0,92	2,34	3,163 (8)	150	(iii) −x+2, −y+2, −z
O6−H6A…O14	0,90	1,95	2,728 (10)	144	(iv) -x+1, -y+1, -z+1
O6−H6B…O10 ⁱⁱ	0,89	1,94	2,752 (9)	149	(v) x-1, y+1, z
O5−H5A…O7	0,89	2,59	3,192(10)	125	
O5−H5B…O8	0,89	2,35	2,935(9)	124	
C21-H21O10iii	0,93	2,52	3,250 (12)	136	
$C9-H9\cdots O4^{iv}$	0,93	2,58	3,362 (11)	142	
С3−Н3…О7 ^v	0,93	2,59	3,242 (13)	128	
O12−H12A…O3	0,82 (2)	2,14 (4)	2,940 (9)	166 (14)	
$O12\text{-}H12B\cdots O1^i$	0,83 (2)	1,89 (3)	2,703 (10)	168 (9)	

Sonuç olarak, kompleks yapılardaki diğer önemli stabilizasyon etkileşimleri, örneğin intraligand ve koordinasyon ortamı etkileşimleri, Tablo 4.4.'de verilmiştir.

Donör (<i>i</i>)	ED(i) (e)	Akseptör (j)	ED(j) (e)	E ⁽²⁾	Donör (i)	ED(i) (e)	Akseptör (j)	ED(j) (e)	E ⁽²⁾
				(kcal/mol)					(kcal/mol)
Kompleks 1					Kompleks 2				
π (N2-C11)	0,86390	π (C7-C8)	0,82230	12,55	LP (1) O3	1,95298	LP*(6) Zn1	0,31278	13,05
LP(3) O3	0,85666	π(O4-C12)	0,98837	33,08	LP (2) O3	1,88031	LP*(6) Zn1	0,31278	30,66
LP (2) O4	0,92690	σ(O3-C12)	0,99589	12,52	LP (1) N2	1,88170	LP*(6) Zn1	0,31278	24,77
LP (2) O4	0,92690	σ(C11-C12)	0,98789	10,30	π(N2-C8)	1,98724	$\pi^{*}(O4-C7)$	0,29686	8,39
LP(1) C10	0,48073	π (N2-C11)	0,86390	72,81	π(N2-C8)	1,98724	π*(C11-C12)	1,98724	26,13
LP*(1) C9	0,47224	$\pi^{*}(C7-C8)$	0,18107	36,91	π(N2-C8)	1,98724	$\pi^{*}(C9-C10)$	0,28773	10,16
$\pi^{*}(N2-C11)$	0,01611	π*(O4-C12)	0,15280	21,50	π (C11-C12)	1,63857	$\pi^{*}(N2-C8)$	0,45047	14,42
$\pi^{*}(N2-C11)$	0,01611	$\pi^{*}(C7-C8)$	0,18107	82,87	π (C11-C12)	1,63857	$\pi^{*}(C9-C10)$	0,28773	18,25
LP (2) O3	0,90034	LP*(3) Mn2	0,17087	25,31	$\pi(C9-C10)$	1,97883	$\pi^{*}(N2-C8)$	0,45047	32,42
LP (2) O3	0,90034	LP*(4) Mn2	0,11632	11,34	$\pi(C9-C10)$	1,97883	π*(C11-C12)	1,98724	19,34
LP(1)N2	0,90956	LP*(5) Mn2	0,10352	23,03	LP(2) O3	1,88031	$\pi^{*}(O4-C7)$	0,29686	15,10
π(N1-C5)	0,98691	$\pi^{*}(C1-C2)$	0,18170	12,01	LP(3) O3	1,88031	$\pi^{*}(O4-C7)$	0,29686	69,44
π(C3-C4)	0,98931	$\pi^{*}(N1-C5)$	0,26337	16,03	LP(2) O4	1,85945	σ*(O3-C7)	0,07098	24,21
π(C3-C4)	0,98931	$\pi^{*}(C1-C2)$	0,18170	10,73	LP(2) O4	1,85945	σ*(C7-C8)	0,10462	21,14
π(C1-C2)	0,99083	$\pi^{*}(C3-C4)$	0,15805	8,44	LP (1) N2	1,88170	σ*(C8-C9)	0,02861	8,56
LP(3) O2	0,84954	π* (O1-C6)	0,15034	33,59	LP (1) N2	1,88170	σ*(C11-C12)	0,03429	8,90
LP(2) O1	0,92648	σ*(O2-C6)	0,03712	12,48	LP (3) Br2	1,91494	π*(C11-C12)	0,35711	11,52
LP(2) O1	0,92648	σ*(C5-C6)	0,04881	10,35	$\pi^{*}(N2-C8)$	0,45046	$\pi^{*}(O4-C7)$	0,29686	39,63
$\pi^{*}(N1-C5)$	0,98691	π*(O1-C6)	0,15034	20,20	$\pi^{*}(N2-C8)$	0,45046	π*(C11-C12)	0,35711	264,63
$\pi^{*}(N1-C5)$	0,98691	$\pi^{*}(C3-C4)$	0,15805	51,10	$\pi^{*}(N2-C8)$	0,45046	π* (C9-C10)	0,28773	111,51
$\pi^{*}(N1-C5)$	0,98691	$\pi^{*}(C1-C2)$	0,18170	65,40	$\pi^*(C11-C12)$	0,35711	π* (C9-C10)	0,28773	120,10
$\pi^{*}(C1-C2)$	0,82938	$\pi^{*}(C3-C4)$	0,15805	63,72	LP(1) O2	1,93927	LP*(6) Zn1	0,31278	16,52
LP(2) O2	0,89394	LP*(3) Mn2	0,17087	29,16	LP (2) O2	1,93927	LP*(6) Zn1	0,31278	27,70
LP(2) O2	0,89394	LP*(3) Mn2	0,17087	9,45	LP (1) N5	1,88418	LP*(6) Zn1	0,31278	21,56
LP (1) N1	0,90123	LP*(4) Mn2	0,11632	24,72	π(N1-C2)	0,03039	LP (1) C6	0,99527	60,13
LP(2) O6	0,96202	LP*(5) Mn2	0,10352	15,34	π(N1-C2)	0,03039	LP*(1) C3	0,96111	22,48
LP*(4) Mn2	0,11632	LP*(8) Mn2	0,00248	33,13	π(N1-C2)	0,03039	$\pi^{*}(O1-C1)$	0,29341	8,87
LP*(5) Mn2	0,10352	LP*(4) Mn2	0,11632	51,57	LP (2) O2	1,93927	σ*(O1-C1)	0,03097	14,88

Tablo 4.4. Kompleks 1 ve 2 için NBO bazında Fock matrisinin ikinci derece pertürbasyon teorisi analizi [11].

	Tablo 4.4. (Devamı).								
Donör (i)	ED(i) (e)	Akseptör (j)	ED(<i>j</i>) (e)	E ⁽²⁾	Donör (i)	ED(i) (e)	Akseptör (j)	ED(j) (e)	E ⁽²⁾
				(kcal/mol)					(kcal/mol)
Kompleks 1					Kopleks 2				
					LP (2) O2	1,93927	σ*(C1-C2)	0,10135	8,34
					LP (3) O2	1,72470	π*(O1-C1)	0,29341	67,60
					LP (1) N1	1,88418	σ*(C1-C2)	0,10135	8,74
					LP (1) N1	1,88418	σ*(C2-C3)	0,03097	8,99
					LP (2) O1	1,85949	σ*(O2-C1)	0,03097	24,47
					LP (2) O1	1,85949	σ*(C1-C2)	0,10135	20,97
					LP (1) C6	0,99527	$\pi^{*}(N1-C2)$	0,45411	57,03
					LP(1) C6	0,99527	$\pi^{*}(C4-C5)$	0,29279	48,30
					LP*(1) C3	0,99527	$\pi^{*}(N1-C2)$	0,45411	130,0
					LP*(1) C3	0,99527	$\pi^{*}(C4-C5)$	0,29279	71,54
					LP (3)Br1	1,91270	LP (1) C6	0,99527	27,75
					$\pi^{*}(N1-C2)$	0,45411	π*(O1-C1)	0,29341	40,78
					LP (2) O5	1,95115	LP*(6)Zn1	0,31278	26,35
					LP (2) O14	1,93754	σ*(O5-H5)	0,05598	23,27
					LP (2) O6	1,96388	LP*(6)Zn1	0,31278	18,79

ED = elektron yoğunluğu; E⁽²⁾, hiperkonjugatif etkileşimin enerjisi (stabilizasyon enerjisi) anlamına gelir.

4.2. Kompleks 1 ve 2'nin Titreşim Frekansları

FT-IR spektrumlarından elde edilen deneysel titreşim frekanslar ve 0,96 [58] ile ölçeklenen HSEh1PBE/6-311G (d,p)/LanL2DZ seviyesi ile elde edilen teorik titreşim frekans değerleri Tablo 4.5.'te sunulmuştur.

Potansiyel enerji dağılımı (PED) dikkate alınarak titreşim modlarını ayrıntılı olarak atamak için VEDA 4 programı [59,60] kullanılmıştır. Ayrıca Tablo 4.5., Mn(II) ve Zn(II) iyonları etrafındaki koordinasyon ortamı ve kompleks **1** ve **2** için titreşim dalga sayılarının ayrıntılı atamaları hakkında bilgi sağlar.

Kompleks 1 ve 2'deki karboksilat grubu (COO⁻) aracılığı ile 6-Brpic ligandının Mn(II) ve Zn(II) iyonlarına koordinasyonu, FT-IR spektrumları ve teorik sonuçlarla doğrulanmıştır. Kompleks 1 ve 2 için FT-IR spektrumlarında v_{as}/v_s COO⁻ titreşim bantlarının 1636/1403 ve 1661/1404'te gözlendiği açıktır. 233/442 ve 257/419 cm⁻¹ olarak elde edilen simetrik ve asimetrik deneysel/teorik COO⁻ gerilme dalga sayıları arasındaki farklar, COO⁻ grubunun Mn(II) ve Zn(II) iyonlarına tek dişli koordinasyonunu göstermektedir. Kompleks 1 ve 2 için bu N, O-şelasyonu, X-ışını kristal yapı analizi ile doğrulanmıştır. 3224 ve 3534 cm⁻¹' de gözlemlenen kompleks 1 ve 2'nin IR bantları, su ligandlarının Mn(II) ve Zn(II) iyonlarına koordinasyonunu gösteren OH gerilme modları olarak atandı (bkz.Sekil 4.3. ve Tablo 4.5.). Pikolinat ve 6-metipikolinat ligandlarının Mn(II) kompleksleri için bu modlar sırasıyla 3137 ve 3225 cm⁻¹ olarak bulundu [55,57]. Mn(II) kompleksleri (kompleks 1, Mn(II) pikolinat ve 6-metilpikolinat kompleksleri) benzer koordinasyon geometrisine sahip olmasına rağmen, bu ligandlar da 6 pozisyonundaki ikame farkı (Br atomu, metil grubu ve H atomu) OH gerilme titresim modlarını sağlamıştır. Birbirinden farklı olması ve bu farklılıkların, ligandlarda 6 pozisyonundaki farklı ikamelerin elektron veren özelliklerinin etkisinden kaynaklandığı söylenebilir. Pikolinat ve 6-metilpikolinatın Zn(II) komplekslerinde, OH gerilme bantları 3475 ve 3287 cm⁻¹'de elde edildi [56,57]. Pikolinat ve 6-metilpikolinatın Zn(II) kompleksleri için koordinasyon geometrisi birbirinden farklı olsa da, kompleks 2'ninki pikolinat kompleksine benzer. Kampleks

geometresine bağlı olarak, kompleks **2** ve pikolinat kompleksi için titreşim modu (v OH), 6-metilpikolinatın Zn(II) kompleksinin tersine yakın değerde elde edildi. Kompleks 2 için koordine edilmemiş su moleküllerine ait OH gerilme modu, 3437 cm⁻¹'de ortaya çıktı ve karşılık gelen mod, 3516 cm⁻¹'de hesaplandı (bkz. Tablo 4.5.).

Şekil 4.3. 4000-400 cm⁻¹ aralığında kompleks **1** ve **2**'nin FT-IR spektrumları [11].

Aromatik ve alifatik sistemlerde CH gerilme modlarının sırasıyla 3000 cm⁻¹'in üzerinde ve 3000 cm⁻¹'nin altında ortaya çıktığı belirtilmektedir [61,62]. Kompleks **1** ve **2**'nin FT-IR spektrumlarından 3091–3050 cm⁻¹ (kompleks **1** için) ve 3118–3046 cm⁻¹ aralığında (kompleks **2** için) CH gerilme titreşim modlarına (v CH) ait IR bantları gözlendi. HSEh1PBE/6-311G(d,p)/LanL2DZ seviyesi kullanılarak kompleks **1** ve **2**'nin karşılık gelen teorik bantlarının sırasıyla 3237–3209 cm⁻¹ ve 3246–3205 cm⁻¹ aralığında olduğu bulundu. Bu bantlar yüzde %98 - %89 aralığında PED katkılarıyla elde edildi. Pikolinat, 6-metilpikolinat ve 6-bromopikolinat ile Mn(II) komplekslerinin v CN ve v CC titreşim modları sırasıyla 1474 ve 1565 cm⁻¹ [55], 1573 ve 1609 cm⁻¹ [57] ve 1584 cm⁻¹'de gözlenmiştir. Benzer şekilde, pikolinat, 6-metilpikolinat ve 6-bromopikolinat içeren Zn(II) kompleksleri için aynı titreşim bantları sırasıyla 1593 ve 1244 cm⁻¹ [56], 1593 ve 1260 cm⁻¹ [57], 1580 ve 1280 cm⁻¹'de ortaya çıktı. CH düzlem içi eğilme titreşimleri 1300-1000 cm⁻¹ aralığında çıktığı belirtilmektedir [61,62]. Pikolinat, 6-metilpikolinat ve 6-bromopikolinat ile Mn(II) komplekslerinin CH düzlem içi eğilme titreşim modları sırasıyla 1385-1046 cm⁻¹ aralığında [55], 1410 cm⁻¹ [57], 1584 ve 1081 cm⁻¹ aralığında işaretlendi. Benzer şekilde, yukarıdaki ligandların Zn(II) kompleksleri için bu titreşim modları sırasıyla 1446-1173 cm⁻¹ aralığında [56], 1466 cm⁻¹ [57], 1439 ve 1081 cm⁻¹ aralığında gözlendi (bkz. Şekil 4.3.). 6-bromopikolinatın Mn(II) ve Zn(II) komplekslerine karşılık gelen titreşim modları, sırasıyla HSEh1PBE seviyesi kullanılarak farklı PED katkılarıyla 1613 ve 1103 cm⁻¹, 1449 ve 1102 cm⁻¹ aralığında hesaplandı (bkz. Tablo 4.5.).

Pikolinat, 6-metilpikolinat ve 6-bromopikolinatin Mn komplekslerinde, IR spektrumlarından düzlem dışı eğilme, halka nefes alma ve burulma titreşimleri pikolinatın Mn(II) kompleksi için 1015 ve 760 cm⁻¹ aralığında [55], 6-metilpikolinat [57] için 1009 ve 678 cm⁻¹ aralığında, 6-bromopikolinat için 1023 ve 406 cm⁻¹ aralığında gözlemlenirken, bu titreşimler sırasıyla 1012 ile 705 cm⁻¹ aralığında (B3LYP/6-311++G(d,p) yöneminde), 982 ile 673 cm⁻¹ aralığında (HSEh1PBE/6-311G(d,p)/LanL2DZ yönteminde) ve 1018 ile 353 cm⁻¹ aralığında (HSEh1PBE yönteminde) hesaplanmıştır. Benzer şekilde, bu titreşim modları pikolinatın Zn(II) kompleksi için [56] 982-643 cm⁻¹ aralığında, 6-metilpikolinat için [57] 1014 ve 713 cm⁻¹, 6-bromopikolinat 1018 ve 404 cm⁻¹ aralığında ortaya çıkmıştır. Bunlara karşılık gelen teorik bantlar pikolinat [56] için 921 ve 642 cm⁻¹, 6-metilpikolinat [57] için 996 ve 709 cm⁻¹, 6-bromopikolinat için 1023 ve 435 cm⁻¹ aralığında elde edilmiştir.

Pikolinat ve 6-metilpikolinatın Mn(II)/Zn(II) kompleksleri için bildirilen titreşim modları ile karşılaştırıldığında, kompleks 1 ve 2 için IR bantlarındaki farklılıklar, bu ligandlarda 6-konumunda bulunan elektron veren ikame edicilerin etkisine

(CH3>H>Br), aynı zamanda mangan ve çinko komplekslerinin koordinasyon geometrisine atfedilebilir.

Tablo 4.5.'te görülebileceği gibi, deneysel ve teorik karşılık gelen titreşimler iyi bir uyum içerisindedir. Ayrıca, bu çalışmada sunulan 6-bromopikolinatın Mn(II)/Zn(II) komplekslerinin titreşim modları ile 6-bromopikolinatın Co(II)/Ni(II)/Cu/(II)/Ru(II) komplekslerinin titreşim modları [7,9,10,52] arasında iyi bir uyumun olduğu belirtilebilir.

.

%PED aracılığı ile	FT–IR	HSEh1PBE		e ve nesuprunu	%PED aracılığı ile	FT–IR	HSEh1PBE		
Kompleks 1		Frenkans ^a	<i>I</i> IR ^b	$I_{\rm Ra}{}^{\rm c}$	Kompleks 2		Frenkans ^a	<i>I</i> IR ^b	I _{Ra} c
υ OH %92		3764	80,2371	57,8269	υ OH %94		3787	77,6893	40,8489
υ OH %100		3763	97,5283	69,8465	υ OH %99	3534	3783	69,5122	52,3119
υOH %100		3632	58,0335	170,3606	υ OH (free) %99		3767	62,5874	55,8012
υ OH %92	3224	3579	78,2964	122,2208	υOH %95		3572	136,8597	53,1743
υ CH %83		3114	0,5737	174,6538	υ OH (free) %91	3437	3375	1099,3533	124,2950
υ CH %83		3112	0,5213	167,9305	υ OH %90	3238	3171	660,0774	132,7963
υ CH %98		3110	2,2418	90,8936	υ CH %93	3118	3116	1,8333	156,9005
υ CH %98	3091	3108	2,2416	95,6109	υ CH %92	3089	3115	1,4956	152,4577
υ CH %89	3072	3082	2,2552	82,3945	υ CH %99	3062	3114	1,2310	58,9384
υ CH %91	3050	3081	3,7160	90,6102	υ CH %99	3046	3114	2,0064	52,5448
υ OC %79	1636	1734	12,9581	158,3943	υ CH %93		3080	6,0578	133,8345
υ OC %80	1630	1727	1044,1841	4,7324	υ CH %94		3077	6,8846	140,2074
υ CC %34		1589	5,4655	495,2138	υ OC %78	1661	1739	15,5493	31,5121
υ CC %35		1586	20,7030	359,3614	υ OC %78	1631	1733	828,9046	9,6708
β HOH %83		1550	109,8596	8,1516	β HOH %64		1643	58,4371	3,2760
υNC %10+ υ CC	1584	1548	45,0614	38,9421	β HOH %62		1605	78,5508	2,6268
%57+β HCC %13									
υNC %10+ υCC		1540	15,6592	42,7127	υ NC %12+ υ CC	1580	1590	45,3891	14,3904
%58+β HCC %15					%39+ β CCC				
					%21				
β HOH %88	1548	1540	71,2439	6,6388	υ CC %64		1588	72,8958	13,9184
β HCC %52 + β CCN		1413	45,4636	128,0996	β HOH %80	1551	1566	89,8847	3,9867
%13									
β HCC %54+ β CCN		1411	32,3960	107,3106	υ CC %40		1558	147,4562	10,9223
%12									
υ NC %43+ β HCC	1439	1379	10,6438	345,8379	υ CC %38		1556	6,6359	256756
%16									
υ NC %40+ β HCC		1369	53,4113	142,9143	υ CC %32+ β		1416	84,6335	9,7673
%19					HCC %34				
υ OC %53+ υ CC %11	1403	1309	200,6348	863,1941	β HCC %37		1414	57,0883	7,6226
υ OC %55+ υ CC %12	1371	1298	129,6640	581,4169	β HCC %15		1396	11,1564	1,9969

Tablo 4.5. Kompleks 1 ve 2 için FT-IR ve hesaplanan titreşim frekanslarının karşılaştırılması [11].

				Tablo 4.5.	(Devamı).				
%PED aracılığı ile	FT–IR	HSEh1PBE]		%PED aracılığı ile	FT–IR	HSEh1PBE]	
Kompleks 1		Frekans ^a	<i>I</i> IR ^b	<i>I</i> _{Ra} ^c	Kompleks 2		Frekans ^a	<i>I</i> IR ^b	$I_{\rm Ra}{}^{\rm c}$
υ NC %61+ υ CC %11	1364	1262	24,7624	25,1088	υ NC %25+β HCC %12	1439	1391	24,2574	1,4276
υ NC %63+ υ CC %10	1276	1259	15,5757	36,9204	υ OC %46+υ CC %10	1404	1336	346,8540	27,1532
υ OC %13+ υ NC %12+	1253	1163	11,5027	4,3949	υ OC %32+υ CC	1370	1330	329,0039	24,0762
υ CC %11+ β HCC %12					%11+ β OCO %11				
υ OC %15+ υ NC %13+	1243	1160	12,0243	4,5752	υ NC %37+υ CC %23		1271	47,1828	6,7816
υ CC %11+ β HCC %11									
β HCC %50		1138	62,1769	14,4504	υ NC %48 +υ CC %10	1272	1269	40,0271	6,6888
β HCC %52	1182	1137	17,2556	21,4325	υ CC %21+υ NC %10+ β HCC %10		1164	8,6690	3,9163
β HCC %25+ β CNC %19	1158	1109	60,0359	11,9385	υ CC %10+ β HCC %11+ β NCC %13	1259	1163	5,7515	5,5896
β HCC %23+ β CNC %21		1105	11,0611	9,3717	υ CC %14+ β HCC %54	1249	1139	63,2233	4,9764
υ CC %13+ β HCC %39	1126	1060	8,5068	8,8285	υ NC %10 +β HCC %24+β CNC %10	1215	1137	29,4636	6,8532
β CCC %24+ β HCC %38	1081	1059	8,0633	3,8013	β HCC %34	1182	1112	70,2723	0,9801
β CCC %32		988	1.1236	368,8066	β HCC %31	1160	1110	1.9308	11.0540
τ HCCN %30+ τ HCCC %42+ τ CCCC %14	1023	982	0,5294	0,3040	υ CC %35+β HCC %53	1127	1061	18,9878	1,4222
β CCC %32		978	7,7035	202,8253	β CCC %10+ β HCC %53	1081	1058	22,3190	1,1234
τ HCCN %28+ τ HCCC %35+ τ CCCC %12	1000	977	2,7582	36,7835	υ NC %20 + β CCN %18		996	12,2245	40,2003
τ HCCN %35+ τ HCCC %41	941	915	0,2858	0,3256	τ HCCC %18+ τ HCCH %60+ τ CCCC %11		992	0,3691	0,0908
τ HCCN %34+ τ HCCC %43		915	0,3814	0,1813	τ HCCC %26+ τ HCCH %58	1014	991	0,8737	0,2806

%PED aracılığı ile	FT–IR	HSEh1PBE	3		%PED aracılığı ile	FT–IR	HSEh1PB	E	
Kompleks 1		Frekans ^a	<i>I</i> IR ^b	$I_{\rm Ra}^{\rm c}$	Kompleks 2		Frekans ^a	<i>I</i> IR ^b	I _{Ra} c
β ΟCO %32+ β ΟCC %11	924	860	21,8112	10,5067	υ CC %11+ β CNC %22+ β CCN %12+ β CCC %19	1002	991	19,7789	23,2045
υ CC %11+ β OCO %32 + β OCC %10	874	858	18,5293	9,6559	β HOZn %21+ τ HOHO %14+ τ OHOZn %17+ τ HOZnN %12		942	238,9117	1,8077
τ HCCC %45+ γ OCOC %33+ γ CNCC %12		814	6,8533	0,4541	τ HCCC %44+ τ HCCH %26+ τ HCCN %14		920	0,3150	0,0877
τ HCCC %45+ γ OCOC %33+ γ CNCC %13	843	809	7,9674	0,4165	τ HCCC %49+ τ HCCBr %15 + τ HCCH %28	919	919	0,5207	0,1185
τ HCCN %22+ τ HCCC %32 + γ OCOC %20		756	52,1949	1,4699	υ NC %11+ υ CC %22+ υ ZnO %16+ β OCC %12	874	861	35,6980	3,3199
τ HCCN %21+ τ HCCC %31+ γ OCOC %23		754	48,3418	0,2657	υ CC %20+ β OCO %40		852	24,5535	2,8876
υ BrC %10+ β OCO %17+ β CCC %22	777	741	88,9627	11,4302	τ HCCBr %35+ τ CCOO %30+ γ CCNBr %13		824	6,9186	1,0102
υ BrC %10+ β OCO %20+ β CCC %11	741	732	31,1913	13,1474	τ HCCN %28+ τ CCCN %12+ γ CCOO %27+ γ CCNC %11	832	822	8,0326	0,7493
γ OCOC %12+ γ CMnCN %13		701	3,1917	3,8824	τ HCCC %18+ τ HCCBr %38+ γ CCOO %28	779	761	48,6135	1,8377
τ CNCC %15 + τ CCCC %11	726	698	8,6398	2,9447	τ HCCC %29+ τ HCCN %31+ γ CCOO %25		760	46,1145	1,2056
β HOMn %19+ τ HOMnO %58	714	676	146,6979	12,3170	β HOH %13 + β CCN %14	770	748	146,9799	0,3507
β HOMn %47+ τ HOMnO %12		650	107,5110	23,8116	β OCO %15+ β CCN %12+ β CCC %13	735	734	73,8591	1,2039
υ CC %10+ β CCC %17		647	8,4414	94,8335	β HOH %13+β CCN %10		724	5,0476	1,5917
β HOMn %16+ β CCC %23	655	638	6,7026	148,6327	τ CCCC %14+ γ CCOO %12+ γ CCOO %10+ γ NCZnC %12		710	4,5284	0,1534

Tablo 4.5. (Devamı).

	Tablo 4.5. (Devani).								
%PED aracılığı ile	FT–IR	HSEh1PBI	Ξ		%PED aracılığı ile FT–IR		HSEh1PBE		
Kompleks 1		Frekans ^a	<i>I</i> IR ^b	$I_{\rm Ra}{}^{\rm c}$	Kompleks 2		Frekans ^a	<i>I</i> IR ^b	$I_{\rm Ra}{}^{\rm c}$
β HOMn %13+ β OCC	587	553	80,0550	20,7546	τ CNCC %10+ τ CCCC %14+	711	708	7,2786	0,1196
%12+ τ HOMnO %18					γ CCOO %10 + γ NCZnC %11				
β OCC %45+ β CCC %10	558	545	67,6601	8,1989	β HOZn %80		668	279,4782	3,6442
β OCC %21+ τ HOMnO		539	86,9806	31,5576	υ CC %10+ β CCC %45		650	8,6976	6,2129
%25									
β HOMn %46+ τ HOMnO %25		517	212,6658	23,8061	β OHO %11+ β CCC %21		649	98,5493	3,9933
τ CCCN %19+ γ OCOC %14+ γ BrNCC %39		497	8,9688	1,9903	β HOZn %11+ β OHO %18	656	645	136,9291	2,3721
τ CCCN %20+ γ OCOC	507	494	2,2644	1,5851	β OCC %28+ β CCC %28	560	545	11,5822	0,7723
$\%$ 13+ γ BrNCC $\%$ 38+ γ									
CNCC %11		4.60						10 (100	
τ CCCC %34+ γ MnCCN %15		460	23,1195	10,5654	β CNZn %11+ β CCC %22		542	10,6498	0,6300
υ CC %21+ β CCN %15	446	444	18.8157	18,1310	τ CCCN %10+ γ CCOO %10+		504	6.3516	0.4116
					γ CCNBr %26			-,	•,••••
υ CC %21+ τ CCCC %29		441	12,1682	11,5813	γ CCOO %11+ γ CCNBr %41	502	503	12,6678	0,7554
υ CC %30+ β CCN %10+ β		426	6,5197	85,4203	τ HOZnN %59		463	74,7648	1,2463
CNMn %10									
υ MnO %12+ β MnNC %23	429	389	25,8566	3,7312	υ CC %17+ υ ZnO %21+ β	446	446	11,7588	2,2386
+ β CNMn %19					CCN %10				
υ MnO %50	411	368	12,0816	0,5795	τ CNCC %13+ τ CCCC %27+		440	8,1646	0,3157
	10.6	220	01 (00)	1 (10 1	γ CCNC %10 + γ NCCZn %11	120		6.0.71.6	a s aa t
τ HOMnO %68	406	339	81,6294	1,6404	υ ZnO %12	438	434	6,0716	2,5084
υ BrC %33+ β CNC %10+ β BrCC %11		320	9,0836	9,8631	υ ZnO %12	411	431	23,3642	1,3506
$p D C \sqrt{20} + p M c N 0/12 +$		317	23 0550	25 7030	$\tau HO7nN \%13 + \tau OHO7n$	404	/18	100 0032	1 0772
$0 \text{ BrC } \sqrt[5]{028} + 0 \text{ MmN } \sqrt[5]{13} + 0 \text{ MmO } \sqrt[5]{14} + 0 \text{ DrCC } \sqrt[5]{10}$		517	25,0550	25,1950	%21	404	410	190,9932	1,0772
0 MINU %14+p Bree %10					/021				

Not: v, gerilme; β, düzlem içi bükülme; τ, burulma; γ, düzlem dışı bükülme. Kısaltmalar: FT-IR: Fourier dönüşümlü kızılötesi; PED, potansiyel enerji dağılımı. ^a 0,96 uyum çarpanı ile elde edilen teorik frekans (cm⁻¹ birimindedir); ^bI_{IR} IR şiddeti (km/mol birimindedir); ^cI_{Ra} Raman aktivitesi (Å⁴/amu birimindedir).

4.3. Kompleks 1 ve 2'nin Elektronik ve Optik Spektral Davranışları

Şekil 4.4., kompleks **1** ve **2** için etanol çözücüde 900 ile 200 nm aralığında kaydedilen deneysel elektronik absorpsiyon spektrumlarını göstermektedir. Elektronik absorpsiyon dalga boylarını, elektronik geçişi, geçiş dipol momenti ve osilatör kuvvetlerini hesaplamak için TD–HSEh1PBE/6–311G(d,p)/LanL2DZ yöntemi kullanıldı. Ligandlar ve metal iyonları için moleküler orbitallerin dikkate değer katkılarını belirlemek için SWizard ve Chemissian [63,64] programları kullanılarak elektronik spektral veriler Tablo 4.6.'da sunulmuştur.

Etanol çözücü içindeki kompleks **1** ve **2**'nin UV-Vis absorpsiyon spektrumlarına göre, iki maksimum soğurma bantları (kompleks **1** için $\lambda_{max} = 277,33$ ve 227,69 nm ve kompleks **2** için $\lambda_{max} = 277,33$ ve 228,01 nm) gözlendi (bkz. Şekil 4.5.). Etanol çözücü içinde kompleks **1** ve **2**'ye karşılık gelen teorik pikler sırasıyla 254,25 ve 243,94 nm, 255,89 ve 232,55 nm'de elde edildi.

Şekil 4.4. Etanol çözücü içinde kaydedilen kompleks 1 ve 2'nin UV-vis spektrumları [11].

Çözücü	Deneysel	TD-HSEH	[1PBE/6-3	11G(d,p)	
	λ (nm)	λ	Osilatör	$\mu_{eg}(D)$	SWizard // Chemissian programı ile belirlenen başlıca katkılar
		(nm)	şiddeti		6-Brpyl: 6-Bromopiridil
Kompleks 1					
Etanol		485,42	0,0251	1,6089	(%60) H [Mn(%68)+6-Brpyl(%22)+COO ⁻ (%8)]→Lα [6-Brpyl(%87)+COO ⁻ (%11)]
					(%16) H-1 [Mn(%59)+6-Brpyl(%28)+COO ⁻ (%9)]→L+1α [6-Brpyl(%87)+COO ⁻ (%9)]
		425,44	0,0326	1,7185	(%86) H-1 [Mn(%57)+6-Brpyl(%31)+COO ⁻ (%9)]→L+3β [6-Brpyl(%94)+COO ⁻ (%4)]
		353,98	0,0261	1,4012	(%92) H-1 [Mn(%59)+6-Brpyl(%28)+COO ⁻ (%9)]→L+3α [6-Brpyl(%95)+COO ⁻ (%4)]
	277,33	254,25	0,0943	2,2583	(%29) H-5 [6-Brpyl(%92)+COO ⁻ (%7)]→Lβ [6-Brpyl(%87)+COO ⁻ (%11)]
					(%21) H-6 [6-Brpyl(%93)+COO ⁻ (%6)]→Lα [6-Brpyl(%87)+COO ⁻ (%11)]
	227,69	243,94	0,0009	0,2111	(%24) H–4 [6-Brpyl(%50)+COO ⁻ (%49)]→L+1 β [6-Brpyl(%85)+COO ⁻ (%8)]
					(%14) H-6 [6-Brpyl(%93)+COO ⁻ (%6)]→Lα [6-Brpyl(%87)+COO ⁻ (%11)]
Gaz fazı		494,26	0,0113	1,0891	(52%) H [Mn(%65)+6-Brpyl(%22)+COO ⁻ (%10)]→Lα [6-Brpyl(%90)+COO ⁻ (%7)]
					(21%) H-1 [Mn(%57)+6-Brpyl(%30)+COO ⁻ (%10)]→L+1 α [6-Brpyl(%89)+COO ⁻ (%7)]
		468,29	0,0716	2,6698	(36%) H [Mn(%65)+6-Brpyl(%22)+COO ⁻ (%10)] \rightarrow La [6-Brpyl(%90)+COO ⁻ (%7)]
					(34%) H-1 [Mn(%57)+6-Brpyl(%30)+COO ⁻ (%10)]→L+1 α [6-Brpyl(%89)+COO ⁻ (%7)]
		363,37	0,0160	1,1105	(44%) H-1 [Mn(%57)+6-Brpyl(%30)+COO ⁻ (%10)]→L+3a [6-Brpyl(%95)+COO ⁻ (%4)]
					(21%) H-2 [Mn(%56)+6-Brpyl(%30)+COO ⁻ (%10)] \rightarrow La [6-Brpyl(%90)+COO ⁻ (%7)]
		323,72	0,0012	0,2898	(36%) H–4 [6-Brpyl(%35)+COO ⁻ (%53)]→La [6-Brpyl(%90)+COO ⁻ (%7)]
					(27%) H-2 [6-Brpyl(%39)+COO ⁻ (%59)]→Lβ [6-Brpyl(%89)+COO ⁻ (%7)]
		306,83	0,0007	0,2201	(18%) H-5 [6-Brpyl(%81)+COO ⁻ (%18)]→Lβ [6-Brpyl(%89)+COO ⁻ (%7)]
					(14%) H-6 [6-Brpyl(%87)+COO ⁻ (%11)]→Lα [6-Brpyl(%90)+COO ⁻ (%7)]
		252,48	0,0019	0,3195	(52%) H–4 [6-Brpyl(%35)+COO ⁻ (%53)] \rightarrow L+3 α [6-Brpyl(%95)+COO ⁻ (%4)]
					(23%) H–3 [6-Brpyl(%40)+COO ⁻ (%59)] \rightarrow L+2 α [6-Brpyl(%96)+COO ⁻ (%4)]
Kompleks 2					
Etanol		301,48	0,0004	0,1482	(%84) H [6-Brpyl(%35)+COO ⁻ (%60)]→L [6-Brpyl(%88)+COO ⁻ (%12)]
		258,98	0,0731	2,0070	$(\%76)$ H-2 [6-Brpyl(%89)+COO ⁻ (%11)] \rightarrow L [6-Brpyl(%88)+COO ⁻ (%12)]
	277.33	255,89	0,0842	2,1401	$(\%67)$ H-2 [6-Brpvl(%89)+COO ⁻ (%11)] \rightarrow L+1 [6-Brpvl(%89)+COO ⁻ (%11)]
	,	,	,	<i>,</i>	$(\%13)$ H-3 [6-Brpyl($\%80$)+COO ⁻ ($\%19$)] \rightarrow L [6-Brpyl($\%88$)+COO ⁻ ($\%12$)]
		253,80	0,0648	1,8697	$(\%70)$ H-3 [6-Brpyl(%80)+COO ⁻ (%19)] \rightarrow L [6-Brpyl(%88)+COO ⁻ (%12)]
			·		(%18) H-2 [6-Brpyl(%89)+COO ⁻ (%11)]→L+1 [6-Brpyl(%89)+COO ⁻ (%11)]
	228,01	232,55	0,0114	0,7514	$(\%84)$ H-6 [6-Brpyl($\%26$)+COO ⁻ ($\%70$)] \rightarrow L [6-Brpyl($\%88$)+COO ⁻ ($\%12$)]

Tablo 4.6. Kompleks	1 ve 2'nin elektronik	ve optik spektral	davranışları [11].
1		1 1	, , ,

Tablo 4.6. (Devamı).								
Çözücü	Deneysel	TD-HSEH	TD-HSEH1PBE/6-311G(d,p)					
	λ (nm)	λ Osilatör $\mu_{eg}(D)$		$\mu_{eg}(D)$	SWizard // Chemissian programı ile belirlenen başlıca katkılar			
		(nm)	şiddeti		6-Brpyl: 6-Bromopiridil			
Kompleks 2	2							
Gaz fazı		327,49	0,0003	0,1504	(%90) H [6-Brpyl(%38)+COO ⁻ (%58)]→L+1 [6-Brpyl(%92)+COO ⁻ (%8)]			
		324,36	0,0003	0,1460	(%82) H-1 [6-Brpyl(%39)+COO ⁻ (%57)]→L [6-Brpyl(%91)+COO ⁻ (%8)]			
		298,20	0,0014	0,2931	(%86) H [6-Brpyl(%38)+COO ⁻ (%58)]→L [6-Brpyl(%91)+COO ⁻ (%8)]			
		217,05	0,1037	2,1880	(%34) H-4 [6-Brpyl(%47)+COO ⁻ (%49)]→L+3 [6-Brpyl(%97)+COO ⁻ (%3)]			
					(%24) H-6 [6-Brpyl(%49)+COO ⁻ (%47)]→L+2 [6-Brpyl(%97)+COO ⁻ (%3)]			
		212,21	0,0451	1,4266	(%53) H-6 [6-Brpyl(%49)+COO ⁻ (%47)]→L [6-Brpyl(%91)+COO ⁻ (%8)]			
					(%15) H-11 [6-Brpyl(%70)+COO ⁻ (%7)+H ₂ O(%14)]→L+16-Brpyl(%92)+COO ⁻ (%8)]			

Kompleks 1 için bu pikler için farklı yüzdelikte (%93 ve %6 arasında) moleküler orbitaller ve bu orbitallerde benzer ligant ve fonksiyonel grupların (6-Brpyl ve COO⁻) katkılarının olduğu atamalar Tablo 4.6.'da verilmiştir. Bu katkıların, $n \rightarrow \pi^*$ ve $\pi \rightarrow \pi^*$ geçişleri olarak belirtilen ligand içi yük transferi (ILCT) etkileşimlerini gösterdiği sonucuna varılmıştır. Kompleks 2'de, farklı moleküler orbitallerin katkılarına rağmen, kompleks 1 ile benzer davranış sergiler (bkz. Tablo 4.6.). Ayrıca kompleksler için 254,25 ve 255,89 nm bantlarının yüksek osilatör kuvvetleri (f = 0,09943 ve f = 0,0842) ve geçiş dipol momentleri ($\mu_{eg} = 2,2583$ and $\mu_{eg} = 2,1401$ D) olduğu açıktır. Etanol çözücü içinde deneysel olarak gözlenmeyen kompleks 1'in diğer önemli absorpsiyon pikleri, 485,42 nm'de (f = 0,0251 ve μ_{eg} = 1,6089 D ile) ve 425,44 nm'de (f = 0,0326 ve $\mu_{eg} = 1,7181$ D ile) ortava çıktı ve metal-ligand ve ligand-ligand yük transferinin Mn(II) iyonu, 6-Brpyl ligandı ve COO⁻ grubundan kaynaklandığını gösterilmiştir. Ancak, etanol çözücü içinde kompleks 2 için bu pikler, Zn(II) iyonunun tamamen işgal edilmis elektron konfigürasyonu nedeniyle elde edilemedi. Hesaplanan diğer absorpsiyon bantları ve ilgili sonuçlar Tablo 4.6.'da verilmiştir. Şekil 4.5.'te görülebileceği gibi, kompleks 1 ve 2 için olası ligand içi yük transferi (ILCT) düşük dalga boylarında ortaya çıkmıştır. Optik özellikleri araştırmak için kompleks 1 ve 2'nin çözeltilerinin geçirgenlik ve yansıma spektrumları kullanılmıştır. T ve R eğrilerinin çizimi Şekil 4.6.(a)'da gösterilmektedir ve birbirleriyle hemen hemen aynıdır. Optik geçiş türü ve enerji bandı boşluğu, Tauc ve Menth'in modeliyle tahmin edilebilir [65,66].

$$(\alpha h v) = A(h v - E_g)^m \tag{4.1}$$

 α soğurma katsayısı, *hv* foton enerjisidir, E_g , bant aralığı enerjisidir ve A bir sabittir. m üssü sırasıyla izin verilen doğrudan ve dolaylı geçiş için 1/2 ve 2'ye eşittir. Denklem (4.1)'de, absorpsiyon katsayısı (α) α = -2.303log T/d ile hesaplanmıştır [67,68]. T geçirgenlik, d ise 1 cm alınan küvetin uzunluğudur.

Şekil 4.5. Etanol çözücü içinde HSEh1PBE metodu ile elde edilen kompleks 1 ve 2'nin elektronik geçişinde en aktif işgal edilmiş ve kullanılmamış moleküler orbitaller [11].

Bu çalışmada, sınır moleküler orbital (FMO: HOMO ve LUMO) enerjilerine atıfta bulunulan bant aralığı enerjisinin hesaplanması, kimyasal reaktivite, moleküler sertlik ve yumuşaklık gibi parametrelerin elde edilmesi ve ayrıca moleküllerin biyolojik aktivite sistemlerini belirlenmesinde önemli bir rol oynamaktadır. Sekil 4.6.(b)'de dikkate alındığında kompleks 1 ve 2 için deneysel bant aralığı (Eg) değerleri sırasıyla 5,30 ve 5,33 eV olarak elde edildi. FMO enerjilerinden hesaplanan karşılık gelen teorik enerji boşlukları α spin için 3,02, β spin için 2,18 (kompleks 1 için), 4,67 eV (kompleks 2 için) olarak bulundu. Pikolinat ve 6-metilpikolinatın Mn(II)/Zn(II) kompleksleri için bant boşlukları arasındaki farklarda, bu ligandlarda 6-konumunda bulunan elektron veren ikame edicilerin (CH3>H>Br) rolünün yanısıra mangan ve çinko komplekslerinin koordinasyon geometrileri dikkat çekicidir. Elektronegatiflik, kimyasal sertlik ve kimyasal yumuşaklık olarak adlandırılan χ , η ve S parametrelerini incelemek için atıfta bulunulan kaynaklardaki denklemlerde kullanılmıştır [69,70,41]. Kompleks 1 için χ , η ve S değerleri sırasıyla α spin için 4,63 eV, 2,33 eV, 0,43 (eV)⁻ ¹'de, kompleks **2** için bu değerler 3,80 eV, 1,51 eV, 0,66 (eV)⁻¹'de hesaplanmıştır. Bu sonuçlar, kompleks 1'in kolayca polarize sistem olarak adlandırılabilecek verimli yük aktarımı sağlayacağını göstermektedir.

Şekil 4.6. (a) Kompleks 1 ve 2 için dalga boyuna (λ) karşılık yüzdelik geçirgenlik ve yansıtma spektrumları (b) kompleks 1 ve 2 için foton enerjisine (*E*) karşılık (αE)² grafikleri [11].

Yapı ve fizikokimyasal özellikler arasındaki ilişki, kompleks **1** ve **2**'nin moleküler elektrostatik potansiyel (MEP) yüzeyleri kullanılarak incelenmiştir [71,72].

Ayrıca Şekil 4.7.'de çizilen bu yüzeyler, karmaşık moleküler yapıları ve bunların boyutlarını ve renk sınıflandırması ile tanımlanan ESP bölgelerini belirlemek için sağlanmıştır. Kırmızı renkli negatif bölgeler olan elektrofilik reaktivitenin karboksilat grubuna ait elektronegatif koordine olmayan O atomları üzerinde olduğu bulundu. Mavi renkli pozitif bölgeler olan nükleofilik reaktivite C-H bağlarında gözlendi.

Şekil 4.7. Etanol çözücü içinde HSEh1PBE metodu ile elde edilen kompleks 1 ve 2 için moleküler elektrostatik potansiyel (MEP) yüzeyleri [11].

4.4. Doğrusal ve Doğrusal Olmayan Optik Özellikler

Günümüzde yeni NLO motiflerinin araştırılması optik iletişim alanındaki ihtiyaçları karşılamak, bilgi depolama ve artan teknolojik gereksinimler nedeniyle önemli bir çalışma alanıdır. Yapılan çalışmalarda, organik bileşiklerin yanı sıra güçlü ve çok yönlü metal ligand bağlarının kullanılması ve kristal yapılarda simetri merkezi olmayan sistemlerin sentezlemedeki başarısı nedeniyle yoğun bir şekilde metalorganik kompleks yapılara odaklanılmaktadır [47-49,55,73-75]. NLO özelliklerine sahip ikinci ve üçüncü dereceden doğrusal olmayan optik malzemelerin sentezi için büyük moleküler polariteye sahip ligandların seçilmesi önemlidir. Bu nedenle, daha büyük ikinci ve üçüncü dereceden doğrusal olmayan optik (β ve γ) değerlerinin, molekül içi yük transferi (ICT) etkileşimleri sergileyen bir konjuge köprü ile bağlanan güçlü elektron veren (D) ve elektron çeken (A) moleküllerin anlamına geldiği söylenebilir. Bu bağlamda, büyük β ve γ değerlerine sahip moleküler malzemeleri hızlı reaksiyon süreleri ve kolay işlenebilirlikleri nedeniyle optoelektronik ve fotonik cihazlardaki olası uygulamalarında büyük ilgi görmektedir. Bu nedenle, yüksek NLO özelliklerine sahip oldukça reaktif malzemelerin üretimi ve karakterizasyonu için etkili NLO motiflerinin sentezlenmesi kaçınılmazdır.

Z-tarama tekniği ile deneysel çalışma yapılmadan 6-BrpicH ligandının geçiş metali komplekslerini içeren deneysel çalışmanın temelini oluşturması nedeniyle, doğrusal soğurma ve kırılma indisi ile ilişkili doğrusal yanıtı gösteren $\chi^{(1)}$ (doğrusal optik duyarlılık) ve $\chi^{(3)}$ (üçüncü dereceden doğrusal olmayan optik duyarlılık) parametreleri Z-tarama tekniği kullanılmadan incelendi. Doğrusal olmayan optik etki ile ilgili daha büyük $\chi^{(n)}$, uygulanan daha düşük elektrik alan kuvveti ve daha kısa yol uzunluğu anlamına gelir.

Kompleks **1** ve **2** için orta IR bölgesindeki dalga sayısına karşı kırılma indisi grafiğinden ortalama kırılma indisi (*n*) değerleri elde edildi (bkz. Şekil 4.8.). Kompleks **1** ve **2** için bu bölgedeki ortalama kırılma indisi (4000-400 cm⁻¹), 1,581 ve 1,629'da elde edildi. Ek olarak, kırılma indisine (*n*) bağlı olarak, UV-Vis bölgesindeki (200-800 nm) molar kutuplanabilirlik (α_p), Clausius-Mossotti'nin yerel alan kutuplanabilirlik modelinden belirlenebilir [76,77].

$$\alpha_p = \frac{3M}{4\pi N_a \rho} \left(\frac{n^2 - 1}{n^2 + 2} \right) \tag{4.2}$$

M, moleküler ağırlık, *Na*, Avogadro sayısı ve ρ moleküler yoğunluktur. Şekil 4.9.(a)'da molar kutuplanabilirlik eğrileri, görünür bölgede 1,55 - 3,2 eV neredeyse sabittir ve daha sonra, kompleks **1** ve **2** için 4,2 eV'de sırasıyla 6,3 x 10⁻²³ ve 6,6 x 10⁻²³ cm³'e ulaşan foton enerjisindeki artışla artar. Maksimum ve minimum pikler, absorpsiyon bölgesinde 4,2 ve 6,2 eV arasında görülür. Büyük kutuplanabilirlik, büyük üçüncü dereceden NLO özelliklerinden sorumludur [75]. UV-Vis bölgesinde (200-800 nm)

üçüncü dereceden doğrusal olmayan optik duyarlılık $\chi^{(3)}$ değerleri, kırılma indisi ile aşağıdaki denklem kullanılarak elde edilir [75,76].

$$\chi^{(3)} = \frac{A}{(4\pi)^4} \left(n^2 - 1 \right)^4 \tag{4.3}$$

Tüm malzemeler için A ~ 10^{-10} esu olarak alınan ve frekanstan bağımsız bir çarpandır. Şekil 4.9.(b)'den gözlemlendiği gibi, üçüncü dereceden doğrusal olmayan optik duyarlılık $\chi^{(3)}$ eğrilerinin molar kutuplanabilirlik α_p ile uyumlu olduğu anlaşılmaktadır.

Şekil 4.8. Kompleks 1 ve 2 için orta IR bölgedesinde kırılma indis grafikleri [11].

Üçüncü büyük dereceden doğrusal olmayan optik duyarlılık $\chi^{(3)}$ malzemenin yüksek frekanslı ultra hızlı optik anahtarlar ve fotonik cihazlar için uygunluğunu öngörür [75]. Son olarak, α_p ve $\chi^{(3)}$ 'ün minimum zirvelerinin, kırılma indisinin minimum zirveleri gibi maksimum absorpsiyon zirvelerine karşılık gelmesi dikkat çekicidir.

Deneysel teknik olmadan γ parametresi ile ilişkili üçüncü dereceden doğrusal olmayan optik duyarlılık $\chi^{(3)}$ denklem (3.9) kullanılarak elde edilmiştir [48,49,77,78,79].

Şekil 4.9. (a) Molar kutuplanabilirlik α_p ve (b) kompleks 1 ve 2'nin üçüncü dereceden doğrusal olmayan optik duyarlılığı $\chi^{(3)}$ [11].

Kompleks **1** ve **2**'nin doğrusal ve doğrusal olmayan optik karakterizasyonunu incelemek için, kırılma indisi, doğrusal kutuplanabilirlik ve duyarlılık, ikinci ve üçüncü dereceden doğrusal olmayan optik parametreler, gaz fazında ve etanol çözücü içinde HSEh1PBE metodu kullanılarak elde edildi. Ayrıca kırılma indisi, doğrusal kutuplanabilirlik ve duyarlılık hem deneysel hem de teorik olarak incelenmiştir. Karşılık gelen deneysel verilerin yokluğunda bazı parametreler, p-Nitroanilin (pNA) ve üre sonuçlarıyla karşılaştırıldı [80,81]. Tablo 4.7.'de μ , \bar{a} , $\Delta \alpha$, n, $\chi^{(1)}$, β , γ ve $\chi^{(3)}$ parametrelerinin sonuçları karşılaştırmalı olarak verilmiştir. Kompleks **1** ve **2** için ndeğerleri, orta IR bölgesinde deneysel olarak 1,581 ve 1,629 elde edilirken, HSEh1PBE metodu kullanılarak etanol/gaz fazında 2,11/1,58 ve 1,42/1,34 olarak hesaplanmıştır. Aynı zamanda, polarizasyon duyarlılığının bir ölçüsü ile ilişkili olan doğrusal optik \bar{a} ve $\chi^{(1)}$ parametreleri, kompleks **1** için 31,73×10⁻²⁴ ve 14,58×10⁻² esu ve kompleks **2** için 35,18×10⁻²⁴ ve 15,98×10⁻² esu olarak hesaplanmıştır. Gaz fazında kompleks **1** ve **2** için karşılık gelen teorik parametreler 36,07 × 10⁻²⁴ ve 18,35×10⁻²

esu, $30,85 \times 10^{-24}$ ve $15,20 \times 10^{-2}$ esu'dur (bkz. Tablo 4.6.). Bu sonuçların ölçüm ve hesaplama hataları arasında tutarlı olduğu söylenebilir.

Ozellikler	HSEh1PBE						
	Kompleks 1		Kompleks 2				
	Etanol	Gaz fazı	Etanol	Gaz fazı			
μ	13,20	7,27	6,41	4,44			
μ^{a}		6,	20				
$\overline{\alpha}$	48,50	36,07	40,93	30,85			
$\overline{\alpha}$ deneysel	31,73		35,18				
$\overline{\alpha}^{\mathrm{a}}$			17				
Δα	33,33	25,49	20,28	13,24			
n	2,11	1,58	1,42	1,34			
ndeneysel	1,581		1,629				
$\chi^{(1)}_{teorik}$	30,65	18,35	15,20	13,73			
$\chi^{(1)}_{deneysel}$	14,58		15,98				
<β>	66,94	4,51	4,57	4,21			
$<\beta>^a$			9,2				
<γ>	558,23	208,45	40,49	8,91			
$\chi^{(3)}$	540,71	56,83	7,029	1,619			
$<\gamma>^a$			15				

Tablo 4.7. Kompleks **1** ve **2** için temel hal dipol momenti (μ_g , Debye), ortalama doğrusal kutuplanabilirlik ($\overline{\alpha}$, 10⁻²⁴ esu), kırılma indisi (*n*), doğrusal optik duyarlılık ($\chi^{(1)}$, 10⁻² esu), yönelime bağlı doğrusal kutuplanabilirlik ($\Delta \alpha$, 10⁻²⁴ esu), ortalama birinci ve ikinci dereceden yüksek kutuplanabilirlik ($\langle \beta \rangle$, 10⁻³⁰ ve $\langle \gamma \rangle$, 10⁻³⁶ esu), üçüncü derecen doğrusal olmayan optik duyarlılık ($\chi^{(3)}$, 10⁻¹³ esu) [11].

^a pNA sonuçları [80]'den alındı.

HSEh1PBE yöntemi ile etanol içinde kompleks **1** ve **2** için ikinci dereceden yüksek kutuplanabilirlik β değerleri 66,94×10⁻³⁰ ve 4,57×10⁻³⁰ esu olarak elde edilmiştir. Bu sonuçlar üre'den (0,130×10⁻³⁰ esu) 514,92 ve 35,15 kat daha yüksektir. Ancak, etanol içinde hesaplanan kompleks **1**'in β değeri dışındaki diğer β sonuçlarının pNA'dan (9,2×10⁻³⁰ esu) daha düşük olduğu bulunmuştur. Etanol içinde kompleks **1** ve **2** için üçüncü dereceden hesaplanan NLO parametresi (γ) değerleri 558,23×10⁻³⁶ ve 40,49×10⁻³⁶ esu bulunmuştur ve bu sonuçlar pNA'dan 37,215 ve 2,699 kat daha

yüksek olduğunu (15×10^{-36} esu) göstermektedir. Üçüncü dereceden NLO duyarlılık $\chi^{(3)}$ sonuçları 540,71×10⁻¹³ ve 7,029×10⁻¹³ esu'da elde edildi. Bu sonuçlar deneysel ölçümler olmadan γ sonuçlarıyla ilişkilendirilebileceğini göstermektedir. NLO sonuçları arasındaki farklılıklar da, koordinasyon ortamından ve simetri merkezinin Mn ve Zn iyonları ile 3d orbitaller üzerindeki etkisinden kaynaklandığı ifade edilebilmektedir.

İkinci ve üçüncü dereceden NLO parametrelerinin tüm sonuçları dikkate alındığında, kompleks **1**'in ikinci ve üçüncü derece mikroskobik NLO özellikleri için verimli bir malzeme olabileceği sonucuna varılmıştır.

BÖLÜM 5. SONUÇ VE ÖNERİLER

Bu çalışma kapsamında, sentezlenen ve kristal yapıları XRD yöntemi ile belirlenen kompleks **1** ve **2** { $[Mn(6-Brpic)_2(H_2O)_2]$ (**1**) ve $[Zn(6-Brpic)_2(H_2O)_2 \cdot H_2O]$ (**2**)}'nin titreşimsel, elektronik ve optik spektral özellikleri deneysel ve teorik yöntemlerle incelenmiştir [11].

Sentezlenen kompleks 1 ve 2'nin XRD analizi ile bozulmuş oktahedral geometrili koordinasyon küresine sahip kristal yapılar oldukları bulunmuştur. Kompleks 1, merkez Mn(II) iyonu etrafında iki adet 6-Brpic'in elektron sağlayan N ve O atomları üzerinden ikişer dişli koordine olarak beş üyeli şelat halkalar oluşturulmuştur. Ayrıca, iki adet su ligandının koordine olmasıyla bozulmuş oktahedral geometrili koordinasyon küresine sahip bir kristal yapı elde edilmiştir. Benzer şekilde kompleks 2'de aynı geometri de tanımlanmıştır. Kompleks 1, iki 6-Brpic ve iki su ligandı tarafından koordine edilen Mn(II) merkezi iyondan oluşur. Kompleks 2'ninde aynı geometriye sahip olduğu, kompleks 1'den farklı olarak kristal yapıda bir adet serbest su molekülü tespit edilmiştir. Kompleks 1 ve 2'deki karboksilat grubu (COO⁻) aracılığı ile 6-Brpic ligandının Mn(II) ve Zn(II) iyonlarına koordinasyonu, FT-IR spektrumlarında v_{as}/v_s COO⁻ titreşim bantları 1636/1403 ve 1661/1404'te gözlenmiştir. Bu frekans bantarı arasındaki farklar 233/442 ve 257/419 cm⁻¹ olarak elde edilmiştir. Bu sonuçlar, COO⁻ grubunun Mn(II) ve Zn(II) iyonlarına tek dişli koordinasyonunu göstermektedir. Bu kompleksler için $n \rightarrow \pi^*$ ve $\pi \rightarrow \pi^*$ geçişleri UV-Vis spektrumlarda yüksek enerjili bölgede gözlenirken, düsük enerjili bölgede ligand metal yük aktarım geçişleri ve d–d geçişleri 3d⁵ elektronik konfigürasyona bağlı olarak Mn(II) iyonu içeren kompleks 1 için gözlenmiştir. Zn(II) iyonu içeren kompleks 2 için görünür bölgede d-d geçişi, hem spin hem de orbital yasaklı olduğu için gözlenmemiştir. Elektronik soğurma bantlarına atanan moleküler orbitaller katkılar

SWizard ve Chemissian programları ile hesaplanmıştır. Merkez metal iyonunun koordinasyon çevresindeki metal iyonu ve elektron sağlayıcı N ve O atomları arasındaki etkileşme enerjileri NBO analizi ile tespit edilmiştir. Yüksek enerjili (LP: yalın çift) $n \rightarrow n^*$ (LP*: anti-yalın çift) M ve LP O \rightarrow LP* M [M: Mn ve Zn] etkileşimleri N ve O atomlarının metal iyonlarına koordine olduğu belirlenmiştir. Kompleks 1'in bağ ve antibağ orbitalleri arasında elde edilen en yüksek etkileşim enerjisi, en büyük yük hareketliliğine ve dolayısıyla en büyük kutuplanabilirliğe sahip olduğunun bir göstergesidir. MEP sonuçlarına göre, kırmızı renk daha çok karboksilat O atomlarını çevreleyen negatif potansiyeli gösteririken mavi renkte H₂O ligandlarına ait H atomlarını çevreleyen pozitif potansiyeli göstermektedir. Ayrıca, MEP yüzeyleri ile hidrojen bağı etkileşmelerinin oluşumu da kolaylıkla görülebilmektedir. Bunun yanında, pozitif potansiyele sahip oldukları düşünülen merkez metal (Mn ve Zn) iyonlarının COO⁻ grubu ve H₂O ligandları ile metal iyonları arasındaki koordinasyonu açıklanabilmektedir.

Etanol çözücü içinde kompleks **1** ve **2** için ikinci dereceden NLO parametresi (β) değerleri 66,94×10⁻³⁰ ve 4,57×10⁻³⁰ esu olarak hesaplanmıştır. Bu sonuçlar, üre (0,130×10⁻³⁰ esu)'den 514,92 ve 35,15 kat daha yüksektir. Etanol çözücü içinde kompleks **1** ve **2** için üçüncü dereceden hesaplanan NLO parametresi (γ) değerleri 558,23×10⁻³⁶ ve 40,49×10⁻³⁶ esu bulunmuştur ve bu sonuçların pNA (15 × 10⁻³⁶ esu)'dan 37,215 ve 2,699 kat daha yüksek olduğu görülmektedir. Üçüncü dereceden NLO duyarlılık $\chi^{(3)}$ sonuçları 540,71 × 10⁻¹³ ve 7,029 × 10⁻¹³ esu'da elde edildi. Bu sonuçlar, deneysel ölçümler olmadan γ sonuçlarıyla ilişkilendirilerek komplekslerin NLO tepkisi tahmin edilebilmektedir. Kompleks **1** ve **2**'nin NLO sonuçları arasındaki farklılıkları, metal iyonların koordinasyon çevresine ve simetri merkezinin Mn ve Zn iyonları ile 3d orbitaller üzerindeki etkisinden kaynaklandığı düşünülmektedir.

Sonuç olarak, birinci ve özellikle ikinci dereceden yüksek kutuplanabilirlik parametreleri için kompleks **1** ve **2**'nin NLO sonuçlarına bağlı olarak, Mn(II) iyonu içeren kompleks **1**'in, yüksek değer kapasitesi sergileyen optoelektronik malzemeler için umut verici bir aday olduğu söylenebilir. Tüm teorik ve deneysel veriler dikkate alındığında sonuçlar arasında iyi bir tutarlılık olduğu sonucuna varılmıştır.

Pikolinik asit ve türevlerinin vücut metabolizmasında çeşitli süreçlerde rol alması, besinlerde katkı maddesi olarak kullanılması, ayrıca farklı metal komplekslerinin enzim aktivite ilişkilerinin incelendiği bilinmektedir. Bu sebeple, sentezlenen 6bromopikolinat komplekslerinin antidiyabetik, antitümör ve DNA bağlanma özellikleri incelenebilir.

KAYNAKLAR

- [1] Tamer, Ö., Bazı Dipiklonik Asit Komplekslerinin Deneysel ve Hesaplamalı Yöntemlerle İncelenmesi. Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Bölümü, Yüksek Lisans Tezi, Samsun, 2011.
- [2] Devereux, M., McCann, M., Leon, V., McKee, V., Ball, R. J., Synthesis and catalytic activity of manganese (II) complexes of heterocyclic carboxylic acids: X-ray crystal structures of [Mn(pyr)₂]_n,[Mn(dipic)(bipy)₂]·4.5H₂O and [Mn(chedam)(bipy)]·H₂O (pyr=2-pyrazinecarboxylic acid; dipic= pyridine-2,6-dicarboxylic acid; chedam=chelidamic acid (4-hydroxypyridine-2,6-dicarboxylic acid); bipy=2,2-bipyridine). Polyhedron, 21(11), 1063-1071, 2002.
- [3] Avcı, D., Altürk, S., Sönmez, F., Tamer, Ö., Başoğlu, A., Atalay, Y., Zengin Kurt, B., Dege, N., Three novel Cu(II), Cd(II) and Cr(III) complexes of 6–Methylpyridine–2–carboxylic acid with thiocyanate: Synthesis, crystal structures, DFT calculations, molecular docking and α-Glucosidase inhibition studies. Tetrahedron, 74, 7198-7208, 2018.
- [4] Kukovec, B.M., Popović, Z., Pavlović, G., Rajić-Linarić, M., Synthesis and structure of cobalt(II) complexes with hydroxyl derivatives of pyridinecarboxylic acids: conformation analysis of ligands in the solid state. J. Mol. Struct., 882, 47–55, 2008.
- [5] Di Marco, V.B., Tapparo, A., Bombi, G.G., New possible chelating agents of clinical interest for iron (III): 2-hydroxynicotinic acid and 3-hydroxypicolinic acid. A thermodynamic study. Ann. Chim., 91(9-10), 595–603, 2001.
- [6] Kukovec, B.M., Popović, Z., Pavlović, G., Copper(II) complexes with 3- and 6-hydroxypicolinic acid. Preparation, structural, spectroscopic and thermal study. Acta Chim. Slov., 55,779–787, 2008.
- [7] Kukovec, B.M., Popović, Z., Kozlevčar, B., Jagličić, Z., 3D supramolecular architectures of copper(II) complexes with 6-methylpicolinic and 6bromopicolinic acid: Synthesis, spectroscopic, thermal and magnetic properties. Polyhedron, 27, 3631–3638, 2008.

- [8] Kukovec, B.M., Vaz, P.D., Popović, Z., Calhorda, M.J., Furić, K., Pavlović, G., Linarić, M.R., Pseudopolymorphism in Nickel(II) Complexes with 6-Methylpicolinate. Synthesis, Structural, Spectroscopic, Thermal, and Density Functional Theory Studies. Cryst. Growth Des., 8(9), 3465-3473, 2008.
- [9] Kukovec, B.M., Popović, Z., Polymorphism of cobalt(II) complex with 6bromopicolinic acid: The influence of the solution pH value on the formation of polymorphs. J. Mol. Struct., 938,174–178, 2009.
- [10] Kukovec, B.M., Popović, Z., Pseudopolymorphism in nickel (II) complexes with 6-bromopicolinic acid. Synthesis, structural and thermal studies. J. Mol. Struct., 930(1-3), 121–125, 2009.
- [11] Avcı, D., Saeedi, Y., Başoğlu, A., Dege, N., Altürk, S., Tamer, Ö., Atalay, Y., Novel Mn(II) and Zn(II) complexes of 6-bromopicolinic acid as a potential optical material: Synthesis, spectral characterizations, linear, and nonlinear optical properties and density functional theory calculations. Appl. Organomet. Chem., 35(3), e6125, 2021.
- [12] Yurdakul, Ş., Spektroskopi ve Grup Teorisinin Temelleri Ders Notları, Gazi Kitabevi, Ankara, 2010.
- [13] Bragg, L., The Diffraction of X-Rays. Br J. Radiol., 29(339), 121–176, 1956.
- [14] Durlu, T.N., Katıhal Fiziğine Giriş, Zirve Ofset, 311., Ankara, 1996.
- [15] Kittel, C., Introduction to Solid State Physics. 8th edition, John Willey and Sons, Inc., 704 pages, New York, 2004.
- [16] Berthomieu, C., Hienerwadel, R., Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res., 101(2-3), 157–170, 2009.
- [17] Köksal, F., Köseoğlu, R., Spektroskopi ve Lazerlere Giriş, Nobel Yayın Dağıtım, Ankara, 2010.
- [18] Perkampus, H.H., UV-VIS spectroscopy and its applications, Springer Verlag, Berlin, Heidelberg, 1–244, 1992.
- [19] Banwell, C.N., McCash, E.M., Fundamentals of molecular spectroscopy, McGraw-Hill Publishing Company Fourth Edition, London, 1994.
- [20] Altürk, S., 1,3-tiyazolidin-2,4-dikarboksilat-Mn(II) kompleksinin 1,10fenantrolin ile sentezi, spektroskopik karakterizasyonu ve DFT metoduyla incelenmesi. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Bölümü, Yüksek Lisans Tezi, 2015.

- [21] Avcı, D., Herteroatom içeren bazı aromatik moleküllerin lineer olmayan optik ve spektroskopik özelliklerinin teorik olarak incelenmesi. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Bölümü, Doktora Tezi, 2009.
- [22] Heyd, J., Scuseria, G.E., Assessment and validation of a screened Coulomb hybrid density functional. J. Chem. Phys., 120, 7274–7280, 2004.
- [23] Heyd, J., Scuseria G.E., Enzerhoff, M., Hybrid functionals based on a screened Coulomb potential [Erratum: "Hybrid functionals based on a screened Coulomb potential", J. Chem. Phys., 124, 219906, 2006]. J. Chem. Phys., 118, 8207 (2003).
- [24] Altürk, S., 6-metilpiridin-2-karboksilik asit içeren bazı geçiş metal komplekslerinin sentezi, yapı analizleri ve α-glukozidaz enzimi üzerine etkilerinin incelenmesi. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Bölümü, Doktora Tezi, 2019.
- [25] Hinchliffe, A., Ab Initio Determination of Molecular Properties; Adam Hilger. Institute of Physics Publishing, Bristol UK, 1987.
- [26] Miertuš, S., Scrocco, E., Tomasi, J., Electrostatic interaction of a solute with a continuum. A direct utilization of Ab initio molecular potentials for the prevision of solvent effects. Chem. Phys., 55(1), 117–129, 1981.
- [27] Van Gisbergen, S.J.A., Snijders, J.G., Baerends, E.J., Implementation of time-dependent density functional response equations. Comput. Phys. Commun., 118, 119–138, 1999.
- [28] Runge, E., Gross, E.K.U., Density-functional theory for time-dependent systems. Phys. Rev. Lett., 52, 997–1000, 1984.
- [29] Stratmann, R.E., Scuseria, G.E., Frisch, M.J., An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys., 109, 8218–8224, 1998.

- [30] Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G., Hratchian, Li, X., Izmaylov, H.P., Bloino, A.F., Zheng, J., Sonnenberg, G., Hada, J.L., Ehara, M., Toyota, M., Fukuda, K., Hasegawa, R., Ishida, J., Nakajima, M., Honda, T., Kitao, Y., Naka, O., Vreven, H., Montgomery Jr, T., Peralta, J.A., Ogliaro, J.E., Bearpark, F.,Heyd, M., Broothers, J.J., E., Kudin, E., Staroverov, K.N., Kobayashi, V.N., Normand, R., Raghavachri, J., Rendell, K., Burant, A., Iyenger, J.C., Tomasi, J.E., Cossi, J., Rega, M., Millam, N., Klene, J.M., Knox, M., Cross, J.E., Bakken, J.B., Adamo, V., Jaramillo, C., Gomperts, J., Strartmann, R., Yazyey, R.E., Austin, O., Cammi, A.J., Pomelli, R., Ochterski, C., Martin, J.W., Morokuma, R.L., Zakrzewski, K., Voth, V.G., Salvdor, G.A., Dannenberg, P., Dapprich, J.J., Daniels, S., Farkas, A.D., Foresman, O., Ortiz, J.B., Cioslowski, J.V., Fox, J., Gaussian 09, D.J., Revision D. 01, 2013 Gaussian. Inc.,Willingford CT, 2013.
- [31] Dennington, R., Keith, T., Millam, J.M., Semichem Inc., Shawnee Mission KS, GaussView, Version 5, 2009.
- [32] Foresman, J.B., Frisch, Æ., Exploring chemistry with electronic structure methods (Second Edition), Pittsburgh, PA, 1993.
- [33] Ditchfield, R., Hehre, W.J., Pople, J.A., Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys., 54, 724–728, 1971.
- [34] Dobbs, K., Hehre, W., Molecular orbital theory of the properties of inorganic and organometallic compounds. 6. Extended basis sets for second-row transition metals. J. Comput. Chem., 8(6), 880–893, 1987.
- [35] Hay, P.J., Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys., 82, 270–283, 1985.
- [36] Hay, P.J., Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys., 82, 299–310, 1985.
- [37] Wadt, W.R., Hay, P.J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys., 82, 284-298, 1985.
- [38] Altürk, S., Avcı, D., Tamer, Ö., Atalay, Y., Comparison of different hybrid DFT methods on structural, spectroscopic, electronic and NLO parameters for a potential NLO material. Comput. Theor. Chem., 1100, 34-45, 2017.

- [39] Avcı, D., Tamer, Ö., Atalay, Y., Solvatochromic effect on UV-vis absorption and fluorescence emission spectra second- and third-order nonlinear optical properties of dicyanovinyl-substituted thienylpyrroles: DFT and TDDFT study. J. Mol. Liq., 220, 495-503, 2016.
- [40] Pearson, R.G., Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Nati. Acad. Sci. USA, 83, 8440–8441, 1986.
- [41] Yang, W., Parr, R.G., Hardness, softness, and the fukui function in the electronic theory of metals and catalysis, Proc. Nati. Acad. Sci. USA, 82(20), 6723–6726, 1985.
- [42] Altürk, S., Tamer, Ö., Avcı, D., Atalay, Y., Synthesis, spectroscopic characterization, second and third-order nonlinear optical properties, and DFT calculations of a novel Mn(II) complex. J. Organomet. Chem., 797, 110– 119, 2015.
- [43] Gorelsky, S.I., Lever, A.B.P., The Electronic Structure and Spectra of $[Ru(NH_3)_4(LL)]^{2+}$ (LL = bpy, bpz, bqdi) studied by Density Functional Theory and INDO/S. Charge Transfer Character of Electronic Transitions and their Solvatochromism. Can. J. Anal. Sci. Spectr., 48(1), 93–105, 2003.
- [44] Rauk, A., Orbital interaction theory of organic chemistry, Second edition, John Wiley and Sons, Inc., New York, 2001.
- [45] Glendening E.D., Reed, A.E., Carpenter, J.E., Weinhold, F., NBO Version 3.1, TCI, University of Wisconsin, Madison, 1998.
- [46] Weinhold, F., Landis, C.R., Glendening E.D., What is NBO Analysis and How is it Useful? Int. Rev. Phys. Chem., 35, 399–440, 2016
- [47] Altürk, S., Avcı, D., Tamer, Ö., Atalay, Y., Şahin, O., A cobalt(II) complex with 6-methylpicolinate: synthesis, characterization, second- and third-order nonlinear optical properties, and DFT calculations. J. Phys.Chem. Solids, 98, 71–80, 2016.
- [48] Oudar, J.L., Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J. Chem. Phys., 67, 446–457, 1977.
- [49] Avcı, D., Second and third-order nonlinear optical properties and molecular parameters of azo chromophores: Semiempirical analysis. Spectrochim. Acta A, 82(1), 37–43, 2011.
[51] Dege, N., Tamer, Ö., Yaman, M., Başoğlu, A., Avcı, D., Atalay, Y., Crystallographic, spectroscopic, thermal, optical investigations and density functional theory calculations for novel Co(II) and Mn(II) complexes. Appl. Phys. A, 127, 132, 2021.

[50]

Lisans Tezi, 2017.

- [52] Rachford, A.A., Petersen, J.L., Rack, J.J., Efficient Energy Conversion in Photochromic Ruthenium DMSO Complexes. Inorg. Chem., 45(15), 5953– 5960, 2006.
- [53] Reed, A.E., Weinhold, F., Natural bond orbital analysis of near-Hartree– Fock water dimer. J. Chem. Phys. 78,4066–4073, 1983.
- [54] Foster, J.P., Weinhold, F., Natural hybrid orbitals. J. Am. Chem. Soc., 102(24), 7211–7218, 1980.
- [55] Tamer, Ö., Avcı, D., Atalay, Y., Çoşut, B., Zorlu, Y., Erkovan, M., Yerli, Y., Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of manganese (II) complex of picolinate: A combined experimental and computational study. J. Mol. Struct., 1106, 98–107, 2016.
- [56] Tamer, Ö., Avcı, D., Çelikoğlu, E., İdil, Ö., Atalay, Y., Crystal growth, structural and spectroscopic characterization, antimicrobial activity, DNA cleavage, molecular docking and density functional theory calculations of Zn(II) complex with 2-pyridinecarboxylic acid. Appl. Organometal. Chem., 32(11), e4540, 2018.
- [57] Avcı, D., Altürk, S., Sönmez, F., Tamer, Ö., Başoğlu, A., Atalay, Y., Zengin Kurt, B., Dege, N., Novel metal complexes containing 6-methylpyridine-2carboxylic acid as potent α-glucosidase inhibitor: Synthesis, crystal structures, DFT calculations, and molecular docking. Mol. Divers., 25,171– 189, 2021.
- [58] Scott, A.P., Radom, L., Harmonic vibrational frequencies: an evaluation of Hartree–Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Chem. Phys., 100(41), 16502–16513, 1996.
- [59] Jamróz, M.H., Vibrational Energy Distribution Analysis VEDA4 (Warsaw), 2004.

- [61] Socrates, G., Infrared and Raman Characteristic Group Frequencies, third ed., Wiley, New York, 2001.
- [62] Varsanyi, G., Vibrational Spectra of Benzene Derivatives, Academic Press, New York, 1969.
- [63] Gorelsky, S.I., SWizard ProgramRevision 4.5, University of Ottawa, Ottawa, Canada, 2010.
- [64] Skripnikov, L., Chemissian: software to analyze spectra, build density maps and molecular orbitals, Version 4.43, 2016.
- [65] Tauc, J., Menth, A., States in the gap. J. Non-Cryst. Solids, 8-10, 569–585, 1972.
- [66] Gündüz, B., Kurban, M., Photonic, spectroscopic properties and electronic structure of PTCDI-C8 organic nanostructure. Vib. Spectrosc., 96,46–51, 2018.
- [67] Şişman, İ., Başoğlu, A., Effect of Se content on the structural, morphological and optical properties of Bi₂Te_{3-y}Se_y thin films electrodeposited by under potential deposition technique. Mater. Sci. Semicond. Process, 54,57–64, 2016.
- [68] Adachi, A., Kudo, A., Sakata, T., The optical and photo electrochemical properties of electrodeposited CdS and SnS thin films. Bull. Chem. Soc. Jpn., 68(11), 3283–3288, 1995.
- [69] Altürk, S., Avcı, D., Başoğlu, A., Tamer, Ö., Atalay, Y., Dege, N., Copper(II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV–Vis spectra, refractive index, band gap and NLO parameters. Spectrochim. Acta A, 190, 220–230, 2018.
- [70] Dege, N., Özge, Ö., Avcı, D., Başoğlu, A., Sönmez, F., Yaman, M., Tamer, Ö., Atalay, Y., Zengin Kurt, B., Concentration effects on optical properties, DFT, crystal characterization and α-glucosidase activity studies: Novel Zn(II) complex. Spectrochim. Acta A, 262, 120072, 2021.
- [71] Sponer, J., Hobza, P., DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations. Int. J. Quantum Chem., 57(5), 959–970, 1996.

- [72] Gadre, S.R., Shrivastava, I.H., Shapes and sizes of molecular anions via topographical analysis of electrostatic potential. J. Chem. Phys., 94,4384–4390,1991.
- [73] Tam, W., Guerin, B., Calabrese, J. C., Stevenson, S. H., 3-Methyl-4methoxy-4'-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation. Chem. Phys. Lett., 154(2),93–96, 1989.
- [74] Singer, K.D., Garito, A.F., Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation. J. Chem. Phys., 75,3572–3580, 1981.
- [75] Divya Bharathi, M., Ahila, G., Mohana, J., Chakkaravarthi, G., Anbalagan, G., Synthesis, crystal structure, growth, optical and third order nonlinear optical studies of 8HQ2C5N single crystal - An efficient third-order nonlinear optical material. Mater. Chem. Phys., 192, 215–227, 2017.
- [76] El-Nahass, M. M., Farag A. A. M., Structural, optical and dispersion characteristics of nanocrystalline GaN films prepared by MOVPE. Opt. Laser Technol., 44(2), 497–503, 2012.
- [77] An, C., Feng, X., Zhao, N., Liu, P., Wang, T., Lian, Z., Syntheses, structures and third-order nonlinear optical properties of two-dimensional rhombohedral grid coordination polymers: [Cd(imz)₃]₂(BTC)·0.5H₂O and [Cu₄(H₂O)₂(imz)₈](BTC)₂·7H₂O(BTC = 1, 2, 4, 5-benzenetetracarboxylate anion, imz = imidazole). J. Clust. Sci., 26, 889–900, 2015.
- [78] Zhao, M. T., Singh, B.P., Prasad, P.N., A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers. J. Chem. Phys., 89, 5535–5541, 1988.
- [79] Avcı, D., Altürk, S., Tamer, Ö., Kuşbazoğlu, M., Atalay, Y., Solvent effect in implicit/explicit model on FT–IR, ¹H, ¹³C and ¹⁹F NMR, UV–vis and fluorescence spectra, linear, second– and third–nonlinear optical parameters of 2–(trifluoromethyl)benzoic acid: Experimental and computational study. J. Mol. Struct., 1143, 116–126, 2017.
- [80] Cheng, L. T., Tam, W., Stevenson, S.H., Meredith, G. R., Rikken, G., Marder, S.R., Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J. Phys. Chem., 95(26),10631–10643, 1991.
- [81] Adant, C., Dupuis, M., Bredas, J. L., Ab initio study of the nonlinear optical properties of urea: electron correlation and dispersion effects. Int. J. Quantum Chem., 56,497–507, 2004.

ÖZGEÇMİŞ

Adı Soyadı : Yalda Saeedi

ÖĞRENİM DURUMU

Derece	Eğitim Birimi	Mezuniyet Yılı
Yüksek Lisans	Sakarya Üniversitesi / Fen Bilimleri Enstitüsü / Fizik Anabilimdali	2021
Lisans	Faryab Üniversitesi/ Eğitim Fakültesi/ Fizik Bölümünü.	2010
Lise	Setara Anadolu Kız Lisesini Setara Anadolu Kız Lisesini	2006

İŞ DENEYİMİ

Yıl	Yer	Görev
2018 -Halen	Sakarya	Tercümanlık
2015-2017	Deutsch Gesellshaft fur international Zusammerabeit (GIZ) Kabil – Afganistan.	Proje inceleme ve Denetim Sorumlusu
2013-2015	Afghan Women Educational Center (AWEC) Faryab – Afganistan.	İl Yöneticilisi
2012-2013	Deh Azizan Lisesi	Öğretmenlik
2011-2012	Afghanistan Sivil Kamu Hizmetleri Enstitüsü	Kamu ve Yönetici Eğitmenilği
2011-2011	Just For Afghan Capacity and Knowledge (JACK)	Öğretmen Eğitmeni

YABANCI DİL

Farsça, Türkçe, İngilizce, Özbekçe, Peştuca, Urduca ve Hintçe

ESERLER (makale, bildiri, proje vb.)

 Avcı, D., Saeedi, Y., Başoğlu, A., Dege, N., Altürk, S., Tamer, Ö., Atalay, Y., Novel Mn(II) and Zn(II) complexes of 6-bromopicolinic acid as a potential optical material: Synthesis, spectral characterizations, linear, and nonlinear optical properties and density functional theory calculations., Appl. Organomet. Chem., 35(3), e6125, 2021.
Avcı, D. (Yürütücü), Saeedi, Y. (YL Öğrenci), Yeni 6-Bromopikolinik Asitin Mn(II) Ve Zn(II) Komplekslerinin Sentezi, Yapısal, Spektroskopik, Elektronik Ve Doğrusal Olmayan Optik Özelliklerinin İncelenmesi, Sakarya Üniversitesi, Lisansüstü Tez Projeleri (LÜTEP), Yüksek Lisans Tez Projesi (2019-7-24-161), 2019-2021.