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Starting [rom the two-dimensional formulation of the Wieghardt 
type elastic foundation, the deflection of the foundation subjected to an 
arbitrarily distributed circular load is obtained hy the method of har- 
monic anaiysis. Based on this study, the solution is given in the form of 
the Fourier series for the problem of circular beam resting on a Wieg- 
hardt type elastic foundation and subjected to an arbitrarily distributed 
load. Numerical results are presented for the two cases of contcentrated 
loadings.
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2. INTRODUCTION

k spring constant of the foundation
P
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P

Qo > Qns > Qnc 
r 
t

foundation pressure
Fourier coefficients of 
nondimensional pressure of the foundation 
arbitrarily distributed circular load 
Fourier coefficiets of 
radial coordinate 
tension of the surface

w nondimensional defiection of the foundation
w defiection of the foundation

w0, w„, w»
w

Fourier coeficients of 
defiection of the circular beam

ır, , ir,., wnc
Wi

Fourier coefficients of
defiection of the foundation inside of the circular 
loading

»Om., winc Fourier coefficients of w, 
defiection of the foundation outside of the circular 
loading

U>A, Wrf„„ Wj,K 
a.P

Fourier coeficients of wtl 
nondimensional parameters of the foundation and the 
beam

3<
3

9
V

angle of twist
nondimensional angle of twist
Fourier coefficients of B
ratio of torsional rigidity to bending rigidity

The Winkler hypotesis assumes that an elastic foundation consists 
of unconnected elastic springs and that the foundation pressure is pro- 
portional to the defiection of the foundation. This elementary theory has 
been the subject of some eriticisin because of discontinuities in the de- 
flactions of the foundation surface at the boundaries of a finite strueture. 
A more rational hypothesis was suggested by Wieghardt [11 using two 
parameters. On the basis of this hypothesis, the defiection of the foun­
dation surface ıv and the foundation pressure p are related according to,

p—kw--t

vvhere the constants fc and t represent the properties of the elastic foun­
dation. This eguation ineludes the Winkler hypothesis in the special case
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of t=0. Schiel [2] pointed out that a mechanical model of this hypoth- 
esis is a licıuid with a certain surface tension. Another model of the 
VVieghardt foundation given by Loof | 3J consists of springs coupled to 
one another vvith elements which transmit a shear force proportional to 
the difference between the deflections of two consecutiye elements. This 
type of elastic foundation can also correspond to the system of springs 
with a spring constant k and a membrane with a tension t layed on 
them [ 4 ].

Solutions for the beam resting on a VVieghardt type elastic founda­
tion was obtained by Ylinen and Mikkola 15 l considering a beam of fi- 
nite length and taking the effect of the shear stresses on the curvature 
of the beam. On the other hand Smith |6] obtained the static buckling 
load for a beam pinned at both ends and resting on this type of founda­
tion. Study of the influence of a VVieghardt type elastic foundation on 
the stability of cantilever and clamped - hinged beams subjected to either 
a uniformly or a linearly distributed tangential forces was made by An- 
derson 171. In a recent investigation the behavior of the foundation un- 
der a semi-infinitely long beam subjected to three cases of loading has 
been obtained by the author 14 |. Ali these investigations have been car- 
ried out considering the problem as one dimensional.

Solutions for the surface of the Wieghardt foundation subjected to 
a loading distributed on a circular area were given by Loof |3] using the 
equation

_ s2 ûty - 8 tc =— —- p, (1)K

where s2—k, t, and 2. s is called cooperating width of coupled springs as 
a comparing value for the maximum deflections of Winkler and VVieg- 
hardt types of elastic foundations subjected to a line load. No further 
two dimensional solution is avaible so far the author knows.

As it \vill be dealt below, it is interesting that, although the VVieg­
hardt type elastic foundation does not permit any discontinuity in the 
deflection of foundation surface, concentrated foundation pressures ap- 
pear at the discontinuities of the slope of the deflection, such as at the 
boundaries of the structures, because of the surface tension t.

In the present paper, a solution is given for a circular beam resting 
on a VVieghardt type elastic foundation using the Fourier series. For 
the VVinkler type, the problem was solved by Volterra [8] and by Bec- 
hert 19] using the same method.
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3. ANALYSIS

3.1. Circular line load

We consider an arbitrarily distributed circular line load on a circle 
of radius a in the form a harmonic series,

p(0) = p0 t- EP"’ sin n 0 + £ p„c cos n 9, (2)

on a Wieghardt foundation. The summation will be carried out with re- 
spect to n=l,2, .... Assuming the deflection of the foundation in a simi- 
lar form, i.e.,

w(r, 9)= wo(r) + ^ıo„(r) • sin 719 + ^u?„c(r) cosnO, (3)

and substituting (2) and (3) into (1), wc obtain the follovving equations 
for the unknown functions w0, w„s and

w’u+—° — s2wo = O,

w^+^-(S2+^jwnc = 0, (4)

where the prime denotes derivatives vvith respect to r. The Solutions of 
(4) are the modified Bessel functions 1101. Remembering that the de- 
flaction of the middle point of the circular load has to be finite and the 
deflection has to diminish as r increases, we obtain the Solutions in the 
following from, 

w, = w(r,9) = Ao/0(sr) + £An. Zn(sr) sin tî9 + £a, Zn (sr)-cos ti 9 for r<a, 

wd=w(r,e)= B0K0(sr)4-£BnsKn(sr) sinn8+£Bn,Kn(sr) cosn9 for r>a,
*>

vvhere A and B represent the constants of integration. The boundary 
conditions comprise, the continuity of the deflection under the load, i.e.,

tc, = u.'j for a=a, (5)

and the discontinuity at the slop of the deflection which can be obtain



90 Zekâi CELEP

by integration of (1) betvveen r=a--0 and r—a + 0 or by writing the 
equilibrium at r=a, which yields,

for r = a.
dr dr k '

Furthermore, the follovving relation has been used for rcducing and
rearranging the boundary conditions (5) and (6),

7nıl(sr) ■ K,.(sr) + /„(sr) K„+1(sr)=-^- • 
O i

Consequently we obtain
s2a

W,~~k
Pofc(as) 70(rs) + Vpn.Kn(as)-I„(rs) sinn0 +

^p„ (as) Z„(rs)-cos n 0],

Wrf =
s'a 
~k [po Z„ (as)-K„ (rs) + ^p« I„(as)-Kn(rs)• sin nO 4-

^pnr7„ (as)-/f„(rs)-cos nO

The deflection of the circle of radius a as derived from (7) is

w (6) = Wi(a, Q) = wd(a, 0) =

= w<,4-£w„, sin n0+ £wnc cos n0,

(7)

(8)

where
S “fl

Wq —- J. (os) * Kn((is) ,

2
u?„.=-s “ Pn, (as)-K„ (as), k
— s‘awncz= j. PnOî,(as) K„(as)- (9)

3.2. Circular beam

We now consider a circular beam of a radius a subjected to a” a' 
bitrarily distributed circular load in the form of
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Q(e) = q0+ £ <7„,sinn0+ £ q„ cosnö. (10)

The enuations of equilibrium at a beam element shown in Fig. 1 are,

Flg. 1. Geometry and cooıdinate System.

Q' + a(q— p) = 0, 
M’—T—aQ = Ü, 
T' + M = 0, (H)

«’here Q .M ,T and p are the shearing force, the bending moment, the 
torsional moment and the foundation pressure, respectively, and the prime 
denotes derivative with respect to 0. The relations of deformation are.

Af = -~ (3,+ w'), 7 = - (12)

»here El and GJ denotes the felxural and torsional rigidity of the cross 
section, and w and 3, are the deflection of the beam and the angle of 
twist of the cross section, the positive direction of which are shovvn in 
Fig-1. From (11) and (12) we obtain two equations for w and 3 = 3>a,

_  — — a _
«/+ (l + v)3'— V w’ + _7-(p-q) = 0,ZL 1

y------3--------- w’ = o,V V
»here v GJ El. The Solutions of (13) can be expressed as

(13)
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w=w0 + 2 wnJsin7i0 + 2 wm cos 77 0,

0 = 3o + 2 sin 770 + 2 (L cos 7i0,

P = Po+ 2 P« sin n0+ Pnc cos n 0. (14)

Substituting (2), (10) and (14) into (13) and using (9), we obtain for 
the unknown coefficients of the above Solutions,

ka3
P"‘~ D~EI n2s2‘I„(sa)‘K„(sa)

— S^(l
w0= —. ■ qa l„(as) K„(as), fC 3o — 0| 'po — Qot

a4
W"s~ D„EIn2 qnl’

— a*
Wnc= DnEIn2qnc'

_ a4(l + v) _
D„EZ(l+v7i2) qa“

_ a«(l + v)
!'nc D„E/(l + v7i2j q'"

_ ka3________
lnc~ DnEI n2s2 In {sa) Kn(sa) q"c’ (15)

where the abbreviation D„ denotes, 

, _______ ka3___________ 772 (1 + v)2
" n v EIn2s2-ln(sa) Kn(sa) 1+vn1

The bending and torsional moments and the shearing force can be ob- 
tained also in the form of the harmonic series, i.e.,

M= M„ sin n0 4-

T= 2 Tns sin n 0 +

Q= 2 sin 7i0 + 
where

.. _ aM7i2—1) 
iV’,-D„(1 + v7î’) 9"'’

_ a2v(7i2-l)
n’~ D„n(l+v7i2) </w

2 Mnc eos 770,

2 Tnr COS 71 0,

2 <?nc cos n0, (16)

w - D „
D„(l+vn‘)q"e’

a2v(7i2—D
r"c ~ "D^(î+77prq-’
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aM«2—D2 
D„n(l-i-vnJ)

a3v(n2—l)2
Qnc~ D„n(l + vn2) q"’

The deflection of the surface of the foundation under the circular beam 
is given as in the equation (7), or it can be expressed in the follovving 
form similarly,

w, (r,0) = wıo (r) + £ win,(r) sinnO+ £ wlnc(r) cos n0,

tr.JrJ0) = w(/o(r) + £ w,/nj(r)-sin «04- (r)-cos n0, (17)

where
lo(rs) — 

w/m = , . . W. /<, (as) W/..=
Zn(rs) ------ w, I„(as)

I„(rs) —

wdo = Ko (rs) -
K» (ar)W°‘ udns

K„(rs)
Kn (as) wnJ, _Kn (rs)—Wdnc n„(as)

4. NUMERİCAL EXAMPLES AND DISCUSSION

The numerical computation was carried out on the B3700 Computer at 
the Computer Çenter of Technical University of İstanbul, and for the 
purpose of numerical application two special cases of loadings are chosen, 
i.e., a concentrated load Q( acting at 0=0 (Qt — loading), for which

q°= 2-a * 9", = 0, 9"= raf '

and a concentrated moment Mt directed outwards at 0=0 (M.,— loading), 
for which

n n _ M>n0, Û» — j •rc a

Further, the numerical value of v is assumed as 0.769, which corresponds 
to the circular cross section with a Poisson’s ratio of 0.3. The remaining 
parameters of the foundation and the beam can be expressed in two non- 
dimensional parameters, namely,

fca:| _
“= E/?' |î = 5“’

for which have been given various numerical values in the computation.
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Fig. 2 shovvs the shape of the foundation surface as well as the de- 
flection of the beam. Because of symmetry (Ç( —loading) or antisymmetry 
(SL loading) the half of the surface is drawn. The advantages of the 
Wieghardt type of foundation model can be seen clearly in Fig. 2. The 
surface of the foundation has no discontinuity, but only its slope be- 
comes discontinuous on the contacting curve of the foundation and the 
beam, vvhere the foundation pressure comes into being. Hovvever, this 
discontinuity appears here because the beam touches the foundation 
along a circular line, and it will vanish if the touching takes place on a 
contacting surface. The deflection of the foundation in the radial direc-
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Flg. 3 (b). The surface of the foundation (Jf,—loading) for Q = 0 and 0 = 7t-



im; Zekfıi CELEP

tion is represented in. Fig. 3. The continuity of the foundation surface 
and the discontinuity of the slope of the surface appear distinctly, and 
the deflection increases as the parameters a or J3 decreases. This fact is 
also valid for the circular deflection of the beam as well, which is illus- 
trated in Fig. 4 for the half of the beam, i.e., for V since the 
other half of the deflection is symmetric (Q,—loading) or antisimmet- 
ric (M,-loading). The symmetry or antisymmetry is also valid for the
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Flg-, 5 (b). The foundatlon pressure under the beam (M;—loading) for
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represantation of the foundation pressure vvhich is shown in Fig. 5 and 
comes into being along the circular curve of contact between the founda­
tion and the beam. Although the maximum pressure and defiection are un- 
der the concentrated load Qt, the pressure takes negative values, vvhile the 
defiection remains alvvays positive. It is interesting to note that the maxi- 
mum pressure does not appear vvith the maximum defiection for Mt — 
loading, vvhich can be seen by comparing Fig. 4(b) and Fig. 5(b). Be- 
sides, the defiection curve for the half of the beam is nearly symmetrical 
as shovvn in Fig. 4(b), vvhereas the variation of the foundation press­
ure as seen in Fig. 5(b) is far from being symmetrical. These result from 
the differential relationship betvveen defiection and foundation press­
ure, vvhich is expressed in (1) as the basic eouation of the foundation 
model. By inspection from Fig. 5 and the values of 3 as vvell, it is seen that 
the parameter [3 , at least betvveen the given limits, does not affect the 
variation of the foundation pressure very nıuch. Hovvever, by decreasing 
the parameter a, the variation of the foundation pressure becomes 
smoother, and its maximum value shifts to the middle of the half beam, 
vvhile the negative values vanish. Further, the variations of the bending 
and torsional moments, of the shearing force and of the angle of tvvist 
can be obtained using the relations (16), vvhich are ommited here for the 
sake of brevity.

Note that the illustratcd dimensionless auantities of the foundation 
as vvell as of the beam are as follovvs,

u)*=w El
Qıa< W*  — IV ■ El

Mı a:

P -P • or p—p a2
Mı

a

5. CONCLUSION

As should be expected and seen by the inspection of the above given 
relations, the foundation model of Wieghardt yields more complicat- 
ed analysis than that of Winkler. The tvvo essencial advantages of this 
model are the continuous surface of the foundation and the variation of 
the foundation pressure. Finally, it is vvorth mentioning that the conver- 
gence of the series used in the Solutions are not equally favorable, as noted 
by Volterra [8| in the analysis of the circular beam on a Winkler type 
of foundation. The order of the convergence of the series is : w, p, 3 
(Qı—loading); then T (Qt—loading) and w, p, 3 (Df/—loading); then 
M (Q,—loading); and T (M,— loading); then Q (Q,-loading) and M 
(Mı—loading). The least favorable series is that of Q (Mı—loading).
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