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Konservatif ve İzleyici Yük Altındaki Elastik 
Kirişin Yanal Burkulması ve Titreşimi
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Lateral buckling and vibration of elastic beam with narroıv rectan- 
gular strip under the combined aetion of concentrated, conservative and 
follover loads are investigated for tıvo caşes of boundary conditions. The 
convergence of the Galerkin’s mcthod is studied and the corresponding 
eigencurves are obtained at which Galerkin’s method gives different 
approzimations. The divergence and flutter loads of the problem are 
calculated and represented for various values of folloıver load in rela- 
tion t o the applied load.

*

ince dikdörtgen kesitli elastik bir kirişin düşey ve izleyici, tekil yük 
altındaki yanal burkulması ve titreşimi incelenerek, burkulma yükleri 
hesaplanmıştır.

Infrodtıction

Lateral buckling of an elastic beam supported at the ends under 
vertical load at the middle section has been investigated in detail (1, 7, 
10). In the these studies, it is assumed that the applied load remains verti­
cal regardless of rotation of the eross section. Therefore, the load as 
well as the stabllity problem are conservative. The loss of the stability 
occurs at the statical position of the beam when the load reaches

(1) Faculty of Engineering and Architecture, Technical University of İstanbul. 
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the buckling value, where the beam has a disturbed equilibrium 
position close to the undisturbed one, and the beam buckles 
by divergence. If this statical problem is investigated from a dynami- 
cal point of vie\v — in this case the small vibration of the beam has 
to be taken into account —, the relationship betvveen the load and the 
vibration frequency, which characterizes the eigencurves of the beam, 
is obtained. There, it can be seen more clearly that the static instability, 
the instability under conservative load, occurs at the point where the 
eigencurves intersect the load-axis. The eigencurves meet the frequency - 
axis at the points which correspond to the free vibration of the beam.

But, if load follows the rotation of the section, it is a follower 
load and the problem ,vill be a nonconservative one. Sue.h nonconserva- 
tive problems can be studied by taking the vibration of the beam into 
account (2). If its eigencurve has the same form as that of conservative 
load, i.e., if it intersects the load-azis without having a maximum value 
for vibration frequency, the beam will buckle again by divergence al- 
though the load is nonconservative. The correspondding buckling load 
can be found also without considering the vibration of the beam. But, 
if the eigencurve does not intersect the load-axis, which means there 
is no value of the load for which there can exist a disturbed form of 
static equilibrium close to the undisturbed form, then the beam may 
buckle by flutter. Buckling by flutter will occur at the critical value 
of the frequency at which the two values of the frequency correspon- 
ding to a load coincide. With further increase in the load the mentioned 
values of the frequency become complex, and the flutter occurs because 
one of these has a negative imaginary part (4). For the approximate 
solution of the nonconservative problem the Galerkin’s method, the 
convergence of which has been proved, can be applied (3, 5).

The stability of beam subjected to conservative or follower forces 
has been studied by many authors in detail (2, 7, 10). In order to sec 
he difference between the conservative and nonconservative problems 

more detail, the two kinds of forces, the conservative and the follo- 
r ones, were considered to act together: the elamped-free column and 

simply supported rod subjected to its own weight and follovver forces 
(using the Galerkin’s method). beams with six typical cases of bound- 
ary conditions (using the finite difference method) (6, 8, 9).

The present study deals with the lateral buckling of an elastic beam 
subjected to conservative and also follovver, concentrated forces with 
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two boundary conditions. Besides this the convergence of the Galerkin’s 
method is studied.

Statement of the problem

Consider a narrovv rectangular strip of length l and height h sup- 
ported at both ends and subjected to a concentrated, conservative force 
Qc and follower force Q, applied at the centroid of the middle cross 
section as shovvn in Fig. 1. The equation of motion of laterally deflec- 
ted and twisted element of the beam are obtained from Fig. 2 as follovvs:

Fig. 1. Elustlc beam under action of conservative and follovver forces

y x+dx

Fig. 2. Lateral deflected and twisted element of the beam

'■ —m W = 0,
Q/=o,

M3—mr' ® + Q2W' = Ü.
Mj Q2~0,

=0, (1)
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and relations of deformation are:

Afj + lf, W' = GJ Ö',
M2— M,& = W' EI/ll—p2), (2)

in which W(x, t) — the lateral deflection and Q(x,t) = the angle of 
tvvist of the cross section, m = the mass per unit length, £?//(!—p-) — 
the small bending stiffness, GJ = the torsional stiffness, r = the polar 
radius of inertia of the cross section, and the prime denotes here dif- 
ferentiation with respect to x and the dot to time t. Because of the 
narrovvness of the cross section only the lateral deflection of the boam 
considered. In this study it is assumed that the beam is simply sup- 
ported in the horizontal plane, while simply supported or elamped in the 
vertical plane. This gives two types of boundary conditions as shovvn 
in Fig. 3: simply supported in the vertical and in the horizontal planes 
(ss-beam), elamped in the vertical plane and simply supported in the 
horizontal plane (cs-beam).

Fig. 3. Supporting types of the beam

Considering Eqs. 1 and boundary conditions, the following equa- 
tions are obtained:

Qı---- 0.5aQ©0—,
Q2=0.5 Q j

Af, = -0.125BQZ+0.5Qa;, 

3f2-0.5aÇ©oa;+lf,n, 

and
for O^a^O.5 l
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Qı — O.5aÇ0o — Qıu >
Q,= -0.5Q,

tfl = 0.1253QZ + 0.5Ç(Z-rr) ,

M2=0.5a.Q^(l-x) + M,„, for 0.5Z<x<?

where

Q - Qc + Q< > 
a.=Qf Q, 
,3 = 0 (for ss-beam), = 1 (for cs-beam), 

l x
Q„= i mİV (1---- ^-Idz— I mİV dz ,

d o

l x
M„—x / mw(l---- dz— / mW (x—z)dz . (3)

0 o

The equations of the problem can be freed from time by setting W(x} t)—> 
— Zn2u>(Ç) and 6(<r, f)-> — OİMÇ), whereÇ=Z/or, and O is the circular 
frequency of the deflection and of the angle of twist.

Approximate solution

For the dimensionless functions w(Ç) and 0(Ç) the follovving three- 
term approximations compatible with the end conditions of the beam, 
are chosen :

3 3
ıo(Ç) = V w„ sin nzÇ, 9(Ç)= V OnSİnnıtÇ. (4)

n=l n= 1

With Eqs. 3 and 4 the function Mm given in Eq. 3 yields 
3

----2^(5>
n=l

Substituting Eq. 1 in Eq. 2 gives
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W~ El M2 + ~0Jtfl = O ’

+ Mt w’=0,
(rJ

(6)

where the prime denotes differentiation with respect to Ç After sub- 
stituting the function ıc(Ç) and 9(Ç) given in Eq. 4 into Eq. 6 and apply- 
ing the Galerkin’s method, the following relations are obtained:

1 3
I X1 w„ n2 sin nx

1 3
• ÇsinmırÇ’dÇ—0.5 qı, f ( 9„ sin n rÇ l (1—Ç)sin m kÇ • dÇ = O ,

0*5

0.5
sin m iîs+O.5(9t — 03)q* a 1 / Ç sin m 7tÇ ■ dÇ +

6

sin n

7t2

0 n=l

sin w TtC‘ d'C +

9„ sin n 7i:Ç | sin m ızt, ■ —0.5 gt

n=l
1 3

•:2 j' ^0" n2 sin nitesin m ıtÇ—। 

o n=l

1 3
w(2 / İ » 9„sinnıv; sinm~Ç-dÇ +

0 n=l
0.5 3

+ 0.1253g, n2 I w, n2sin n ] sin mıciÇ d",—

0* n=l

0.5 3
wn n2 sin nırÇ ] Ç sin m 7tÇ • dÇ—

n=l
3

— 0.5 gt ti2 I wn n2 sin n ıtÇ j (1—Ç) sin m nÇ • diÇ = 0 , for m = 1, 2, 3

0.5 n=l

0
1

where
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2 |A2) , mr2n2l2
=- ~El —> Qb-

QF(1- p2) 
El

„_Ql2 
q,~ GJ ’

These relationships yield a system of six linear homogen equations, 
which can be vvritten in the matrix form as 2U.v = 0. The matrix M 
and the vector v are given in Fig. 4. The determinant of M yields the 
stability condition, i.e., a relationship betvveen the applied force and the 
frequency of the beam.

0 2 4 6 8 y5b
Fig. 5a. Eigencurves of the ss-beam for a = 0



The numerical procedure

In the numerical solution the follovving relations were used, remem- 
bering that the cross section is a narrovv rectangular strip,

<7A = 2(1-p)ç,, w2b=24 (1 — u) w2,/k3,

vvhere \=h/l. The numerical computation was made by setting p.=0.3 
and X=0.1 on the B3700 Computer at the Computing Çenter of the 
Technical University of İstanbul. The relation between qb and , was 
obtained and plotted to give the eigencurves of the beam. Assuming 
the vector v as having two, three, four, five and finally six components, 
i.e., v2= (w,, 9ı), ı>3= (Wi, w2, Ot), v<= (wt ıv2, w,, 9J, v5-, uş , w3, 
0,, ft.) and v6= (Wı, , w}, 9ı , 02, 9j), and taking the corresponding 
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subdeterminants of M, the eigencurves were drawn in Fig. 5 for a=0. 
As seen in Fig. 5 the eigencurves intersect the frequency-axis at the 
first three freqııencies of the free bending and torsional vibrations of 
the beam, and the load-axis at the buckling loads which correspond to 
the buckling by divergence. Although the convergence of the Galerkin’s 
method seems to be good, the appraximation differs from branch to 
branch of the curve. Further numerical calculations were carrier out 
setting 0j=O, i.e., taking v as a five-component vector, and the eigen­
curves for various values of the nonconservativeness parameter a were 
plotted as seen in Fig. 6.

Fig. 6a. Eigencurves of the ss-beam for various values of a
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Fig. 6b. Elgencurves of the cs-beanı for various values of a

Conclusions

The second eigencurves of the beams are independent of a, because 
the angle of tw.'st of the middle cross section is zero at the second 
vibration mode. Thus, the ss-beam has a divergence load independent 
of a, while the cs-beam has not. The forms of the first and third 
eigencurves are represented in Fig. 7. If a<aIt the beams have one 
divergence load only, while they have one divergence and one flutter 
load for aı<a<a2. The divergence load vanishes for a>a2. At a=a>
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frequency

the two eigencurves coincide and take a vertical tangent at the point of 
intersection with the load-axis, and thus, the two critical loads become 
equal. The values of the lateral buckling loads versus the nonconservati- 
veness parameter « are represented in Fig. 8. As a increases the diver- 
gence load increases untii a=«2, this can be regarded as the result of 
the lovver bound theorem (5).
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Flg. 8. Divergence and flutter loads of the ss- and cs-beams for X -0.1 and g — 0.3

Appendix I. — Notation

E/(l—pı2) = small bending stiffness of the cross section 
GJ — torsional stiffness of the cross section

h = height of the beam
l = length of the beam
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m = mass per unit length
Qc = conservative force
Qf = follovver force
r — polar radius of inertia of the cross section

W = lateral deflection
a ~ nonconservativeness parameter
3 = 0 (for ss-beam), 1 (for cs-beam)
ö = angle of tvvist of the erosa section
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