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ABSTRACT

In this study, seismic events in Kula district (Manisa, Turkey) and its vicinity have been investigated 
and then natural and artificial seismic activities are discriminated. Total of 77 digital vertical 
component velocity seismograms of seismic activities with ML≤3.5 magnitude from seismic activity 
catalogs between 2009 to 2014 recorded by Manisa Kula (KULA) broadband station operated by 
Bogazici University, Kandilli Observatory and Earthquake Resarch Institute Regional Earthquake-
Tsunami Monitoring Center (RETMC) were used in this study. The maximum S-wave and maximum 
P-wave amplitude ratio (Ratio) of vertical component velocity seismograms and power ratio for (1 
and 12 sec.) (Complexity-C) and total signal duration (Duration) of the waveform were calculated. 
The earthquakes and the quarry blasts have been discriminated using linear discriminant function 
(LDF) and Back Propagation-Feed Forward Neural Networks (BPNNs) that is one of the learning 
algorithms at the artificial neural networks (ANNs) methods taking correlation between these 
parameters into consideration. 39 (51%) of the 77 seismic activities were identified as quarry blasts 
and 38 (49%) of them as earthquakes  LDF and ANNs methods have been applied together for the 
first time for Ratio-C, Ratio-logS and Ratio-duration parameter pairs with the data of Manisa and 
surroundings, and earthquakes and quarry blasts have been distinguished from each other. LDF and 
ANNs methods  were compared for each pair of parameters. Both of two methods are successful but 
the ANNs method has higher accuracy percentage values than LDF method when there is sufficient 
number of data. The accuracy percentages are different for a pair of Ratio versus C, for a pair of 
Ratio versus logS and for a pair of Ratio versus duration, respectively. 
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1. Introduction

While seismic recorders record seismic events in 
a region, they also record artificially induced seismic 
activities such as mines and quarries along with 
earthquakes of natural origin. Taking these events 
together in earthquake catalogs may cause errors in 

scientific studies. Therefore, problems may occur in 
the preparation of earthquake catalogs. In order to 
determine the real seismic activity in the study areas, 
earthquakes and quarry blasts should be distinguished 
from each other. For this differentiation process, it may 
not be sufficient to use the location, distance and time 
of occurrence parameters of the area where the blast 
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is made. In such a case, the waveform of the seismic 
event should also be examined (Horasan et al., 2006).   

So far, about to be distinguished from each 
other by using different methods of earthquakes and 
quarry blasts in the world and in Turkey has been 
much scientific research. Baumgardt and Young 
(1990) studied the separation of earthquakes and 
blasts using the Pn / Sn and Pn / Lg ratio method in 
Western Norway. Dowla et al. (1990), similar to the 
LDF method, used the ANNs method to distinguish 
between natural earthquakes and underground 
nuclear blasts in the United States.  Wüster (1993) 
distinguished earthquakes and explosions with 
Lg / Pg and Lg / Rg ratio methods in Vogland 
(Germany-Czechia) region. Horasan et al. (2006; 
2009) distinguished earthquakes and explosions in 
İstanbul with the LDF method. Deniz (2010) in Bursa, 
Öğütcü et al. (2010) in Konya and Kartal (2010) in 
Trabzon made the separation analysis of earthquake 
and quarry blast with Linear Discrimination Method. 
Kalafat (2010) has distinguished earthquakes and 
quarry blast with extraction methods in the immediate 
vicinity of Turkey. Kekovalı et al. (2010; 2012a) 
have characterized the seismic events with the help 
of the LDF process in Turkey. Küyük et al. (2011a) 
conducted earthquake and blast separation analysis 
in İstanbul using LDF, Quadratic Discrimination 
Function (QDF), Diaquadratic Discrimination 
Function (DDF) and Mahalabonis Discrimination 
Function (MDF) methods. Yılmaz et al. (2013) using 
the LDF methods have characterized earthquakes 
and quarry blasts in the Eastern Black Sea region of 
Turkey. Budakoğlu and Horasan (2018) distinguished 
earthquakes and explosions in Sakarya province 
using the LDF method. Yavuz et al. (2018) classified 
the seismic events in Armutlu by using LDF and 
QDF methods. Ceydilek and Horasan (2019) have 
distinguished seismic activities in and around Manisa 
using the LDF method.  In addition to these methods, 
various ANNs algorithms are used to distinguish 
earthquakes and blasts from each other. Gitterman 
et al. (1998) tried to distinguish natural and artificial 
earthquakes in the Middle East Region from each other 
by using LDF and ANNs methods. Ursino et al. (2001) 
developed a direct method in an automated consulting 
classification to distinguish between earthquakes 
and blasts in the southeast of Sicily. Del Pezzo et 
al. (2003) developed a classification in Italy using 
a consulting learning algorithm based on multiple 

neural network (MCN) structure. Küyük et al. (2009) 
tried to distinguish natural and artificially induced 
earthquakes in the İstanbul region using the reaction 
surface, multivariate regression and Learning Vector 
Quantization (LVQ) methods. Küyük et al. (2010; 
2011b) tried to distinguish earthquakes and explosions 
from each other with the Self-Organizing Map (SOM) 
method in İstanbul. Yıldırım et al. (2011) studied the 
separation of natural and artificial earthquakes using 
Feedback ANNs (BPNNs), Matched Neural Fuzzy 
Logic Inference Systems (ANFIS) and Probabilistic 
Neural Networks (PNN) algorithms. Kekovalı et al. 
(2012b) made a segregation analysis with data mining 
application in Tuncbilek-Kutahya region. Kundu et al. 
(2012) used seismograms to distinguish between local 
earthquakes and chemical explosions recorded on the 
Gauribidanur Road in India, using an ANNs method 
known as the "Back Propagation Network", known 
as the Multilayer Artificial Neural Network (MLP). 
Küyük et al. (2012) used K-mean, Gaussian Mixing 
Model (GMM), LDF and Quadratic Discrimination 
Function (QDF) methods and ANNs algorithms to 
distinguish earthquakes and explosions with high 
accuracy in İstanbul. Hammer et al. (2013) classified 
seismic events, which they divided into three classes 
as earthquakes, blasts and rock falls, with the help of 
ANNs method according to the records in the Swiss 
Alps. Kortström et al. (2016) distinguished natural 
and artificial earthquakes in Finland using the Support 
Vector Machine (SVM) method. Mousavi et al. (2016) 
used a machine learning technique to investigate the 
relationship between the seismic properties and the 
location of the focal centers where the events belong 
to the signals recorded in the time, frequency and 
time-frequency domain in the United States. Kaftan 
et al. (2017) have calculated the monthly frequency 
of earthquakes in western Turkey by using multilayer 
neural network (MLP), Radial Basic Function ANNs 
(RBFYS), and compatible Neural Fuzzy Logic 
Inference Systems (ANFIS) methods. In addition, 
many researchers have studied using LDF and ANNs 
methods together or separately (Çetin et al., 2006; 
Gülbağ, 2006; Üstün, 2009a, b, c, Üstün and Yıldız, 
2009; Küyük et al., 2009; Yıldırım et al., 2011; 
Çayakan, 2012, Yıldırım, 2013).

In this study, the distribution of seismic activities 
in and around Manisa and the location of the KULA 
station are shown in figure 1. GMT program was used 
for drawing the maps (Wessel and Smith, 1995). Most 
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Figure 1- The distribution of seismic events with ML ≤ 3.5 that occurred between May 2009 and February 2014 in the study area 
and the location of the KULA station (KRDAE, BDTİM). The faults were taken from Şaroğlu et al. (1992) and Emre et al. 
(2013). 

of the artificially sourced blasts recorded in the study 
area originate from the mines and quarries operated 
in the region to obtain mining and construction 
materials. The aim of this study is to distinguish the 
blasts in Kula (Manisa) and its surroundings from 
earthquakes using LDF and ANNs methods, using the 
numerical vertical component velocity seismograms 
recorded at the KULA station between May 2009 and 
February 2014.  Thus, correct information can be used 
in seismicity studies. In addition, reliable data will 
be obtained in the creation of earthquake catalogs in 
earthquake research centers. Thus, contribution will 
be made to the preparation of catalogs containing 
natural seismic activity in the region. In this case, the 
amount of error will be significantly reduced in the 
determination of active faults, seismic risk studies and 
studies involving seismic activity in the region. 

2. Data Acquisition

In this study, the numerical vertical component 
velocity seismograms of 77 seismic events with 
magnitude ML≤3.5 recorded at the KULA station 
between May 2009 and February 2014 in the region 
between latitudes 38°-39.30°N and longitudes 28° 
-29.30°E were examined. The data were taken 
from Bogazici University Kandilli Observatory 
and Earthquake Research Institute (KRDAE, 

BDTİM). The Manisa-Kula (KULA) station, which 
is broadband, was established on January 15, 2007 
(Figure 1). Digital data were recorded at 50 samples 
per second.

When the distribution of the total number of seismic 
activities in the study area and only the number of 
earthquake activities according to the occurrence time 
is plotted, the histogram obtained is shown in figure 2. 

While earthquakes and blasts are distinguished 
from each other, it is not sufficient to compare them 
only by day and time. Therefore, vertical component 
velocity seismogram and spectrum are used since 
these show significant differences in distinguishing 
quarry blast and earthquake data from each other. 
When the blast seismogram was examined, it was 
seen that the P-wave amplitude was higher than that 
of the earthquake. It is also observed that the direction 
of the first movement on the signal is upwards 
(Figure 3). The frequency contents of seismic events 
used in this study are shown in figure 4. Spectral 
corrugation is observed on the detonation spectrum 
when looking at figure 4. This is due to the delayed 
arrival of wave energy to the station during quarry 
blasts. Although the waveform and spectrum are used 
to visually distinguish earthquakes and explosions, 
the parameters obtained from them are compared in 
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practice. Therefore, different parameter pairs will 
be calculated and the distribution between these 
parameter pairs will be examined. 

In order to obtain the parameters, the ratio of 
the maximum S-wave amplitude to the maximum 

P-wave amplitude of the vertical component 
velocity seismograms, the ratio of their complexities 
(Complexity-C) and the total signal duration of the 
waveform were calculated. These parameters are 
described below.

Figure 3- Vertical component velocity seismogram recorded at KULA station; (a) Earthquake, (b) Quarry Blast.

Figure 2- The distribution of the number of seismic activities (occurrences) in each hour (UTC) between 38-39.30˚N and 28-
29.30˚E, May 2009-February 2014 in the study area. a) During the day, maximum activity is observed at 13:00 and a large 
increase in the number of events is observed between 13:00 and 15:00, b) Distribution of the number of earthquakes after 
the events determined as quarry blast as a result of this study were eliminated.
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 2.1. Calculating the Ratio (C) of the Powers of the 
Two Time Windows Defined in the Seismogram

The ratios of the vertical component velocity 
seismograms for each seismic event, i.e. the complexity 
(C), are calculated according to the equation 1 below 
(Arai and Yosida, 2004).

 
(1)

where

t0 is expressed as arrival time of the P wave

t1 and t2 are expressed as time window range.

In this study, t1 and t2 values are taken as 1 and 
12 seconds for the KULA station, respectively. The 
1-second time window is based on the P wave signal. 
The second time window is determined by considering 
the time difference ts-tp of events at different distances 
used in the study.  

2.2.  Calculation of Amplitude Ratio (S / P Maximum 
Amplitude Ratio, Ratio)

After defining the maximum P-wave and maximum 
S-wave amplitudes from the vertical component 
velocity seismograms of earthquakes and blasts, the 
S / P maximum amplitude ratio (Ratio) for seismic 
events was calculated. 

2.3. Defining Total Signal Duration (Duration)

The duration parameter is determined from the 
duration of the signal. After these parameters were 
calculated, normalization process as [-1, +1] was 
applied to the data set. The reason for this is to provide 
ease of establishing relationships between parameters. 
According to Patro and Sahu (2015), normalization 
process is shown in equation 2:

 (2)

A*: Maximum-Minimum normalized data

[D, E]: Predefined border

A: Original data set

For [-1, +1]; D = -1 and E = +1

After the data set was normalized, LDF and ANNs 
methods were applied to distinguish earthquakes and 
explosions using the parameters described above.  

3. Methods

3.1. Linear Discrimination Function (LDF) Method

LDF method is used to distinguish different 
data groups from each other (Fisher 1936). Linear 

Figure 4- Normalized amplitude spectrum of the signal recorded at the KULA station; (a) Earthquake, (b) 
Quarry Blast.
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Discrimination Functions are generally shown in 
equation 3 in a simplified form:

+…+  (3)

a: Constant number

b1, … , bm: Regression coefficients

X1, … , Xm: normalized values of discrimination 
parameters. 

Using the vertical component velocity seismograms 
of the KULA station in the study area, the ratio of the 
maximum S-wave amplitude to the maximum P-wave 
amplitude is plotted against the ratio (C) of the powers 
of the two time windows defined in the seismogram. In 
this graph (Figure 5a) earthquakes and explosions are 

distinguished from each other by linear discrimination 
function. For this, Statistical Package Program of 
Social Sciences (SPSS, 2005) was used. 

For the LDF method, the amplitude ratio versus 
logS and signal duration graphs are shown in figure 
5b, c.  The accuracy percentage results and diagnoses 
obtained by the LDF method for each parameter pair 
(Ratio-C, Ratio-logS and Ratio-Duration) of the data 
set belonging to KULA are shown in table 1.                  

3.2. Artificial Neural Networks (ANNs) Method

Seismic events in the region were also distinguished 
from each other by the method called Artificial Neural 
Networks (ANNs). According to Gülbağ (2006), the 

Figure 5- Percent accuracy values obtained by LDF method according to parameter pairs for KULA data. (a) 94% for Ratio-C parameter pair; 
(b) 93.5% for ratio-logS parameter pair and (c) 89.6% for Ratio-Duration parameter pair.
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Table 1- Distinguishing seismic events recorded at Kula station by LDF method. Criteria: 1: The accuracy percentage obtained for the Ratio-C 
parameter pair is 94%; 2: The accuracy percentage obtained for the ratio-logS parameter pair is 93.5% and 3: The accuracy percentage 
obtained for the Ratio-Duration parameter pair is 89.6%.

Criteria Classification Predicted group Total

1           

Quarry Blast (QB) Earthquake (E)

Total Number
Quarry Blast 39 0 39
Earthquake 5 33 38

%
Quarry Blast 100 0 100
Earthquake 13.2 86.8 100

2           
Total Number

Quarry Blast 39 0 39
Earthquake 5 33 38

%
Quarry Blast 100 0 100
Earthquake 13.2 86.8 100

3          
Total Number

  Quarry Blast 39 0 39
Earthquake 8 30 38

%
Quarry Blast 100 0 100
Earthquake 21.1 78.9 100

human brain is a complex system consisting of nerve 
cells called neurons and the connections between them. 
Neurons communicate with each other through these 
connections. ANNs learning algorithms are inspired 
by human nervous system architecture. According to 
Yıldırım (2013), after determining the problem, while 
deciding to train the network; "Unsupervised learning" 
with only inputs and "supervised learning" with input-
output pairs are taken into account according to the 
type of learning. Choosing the learning algorithm that 
will train the artificial neural network is very important. 
There are different learning algorithms such as ANFIS 
(Compatible Neural Fuzzy Logic Inference Systems), 
LVQ (Learning Vector Quantization), BFNNs 
(Feedback ANNs), PNN (Probabilistic ANNs), BPNNs 
(Backpropagation - Feed Forward ANNs), MLP (Multi 
Layered ANNs) and RBFYSA (Radial Basic Function 
ANNs) (Çetin et al., 2006; Gülbağ, 2006; Küyük et 
al., 2009; Üstün, 2009a, b, c; Üstün and Yıldız, 2009; 
Yıldırım et al., 2011; Çayakan, 2012; Yıldırım, 2013; 
Kaftan et al., 2017).

3.2.1.  Back Propagation - Feed Forward Anns 
(Bpnns) Learning Algorithm 

The learning algorithm used in this study was 
selected as Back Propagation-Feed Forward Neural 
Networks. The reason for this is that it is a solution 
to our problem and it is a reliable learning algorithm 
because it is widely used (Çetin et al., 2006; Gülbağ, 
2006; Küyük et al., 2009; Üstün, 2009a, b, c; Üstün 
and Yıldız, 2009; Yıldırım et al., 2011; Çayakan, 

2012; Yıldırım, 2013; Kaftan et al., 2017). This 
algorithm got this name because it tries to reduce 
errors backwards, ie from output to input (Çetin et al., 
2006). This network structure is simple and although 
it gives a lot of correct results, it is a slow learning 
algorithm (Çayakan, 2012). The weights according 
to the amount of error between the desired output 
and the actual value are arranged with this learning 
algorithm to obtain the most appropriate output values 
(Yıldırım, 2013). After deciding on the learning 
algorithm, the network topology, ie architecture, of 
the artificial neural network was created. In general, 
the elements of the network topology are shown as in 
figure 6 (Gülbağ, 2006).

After the learning algorithm is determined 
according to the type of the problem, a network 
structure in the form of input layer, hidden layer and 
output layer is created. In general, the elements of 
the network topology are defined as inputs, outputs, 
weights, sum function, activation (Transfer) function 
(Rumelhart et al., 1986). Entries are information 
entering the cell from other cells or external 
environments, and enter the cell over the weights on 
the connections. The weights (w) determine the effect 
of the relevant input on the cell (Figure 6).

In this study, the artificial neural network 
represents the feed forward artificial neural network 
according to its structure and the counseling learning 
according to the learning algorithm. In the artificial 
neural network model that we have determined 
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according to our problem, in the learning algorithm 
applied to the network topology we have created, the 
artificial neural network is given both input values and 
output values that must be produced in response to this 
input, consulting learning has been applied according 
to the learning algorithm. In addition, the parameter 
pair to be tested was used as the input parameter to 
the system, and the diagnosis as the output parameter. 
These parameter pairs are, respectively, the ratio of the 
maximum S wave amplitude to the maximum P wave 
amplitude (Ratio) and the power ratio (C) (Figure 7a), 
the ratio of the maximum S wave amplitude to the 
maximum P wave amplitude (Ratio) and the logarithm 
of the maximum S wave amplitude (log S) (Figure 
7b) and the amplitude ratio (Ratio) of the maximum 
S wave to the maximum P wave and the total signal 
duration (Duration) of the waveform (Figure 7c).

3.2.2. Choosing the Number of Neurons (Nn) 

While creating an artificial neural network 
topology, the choice of the number of neurons 
(Nn) is of great importance on the learning process 
(Gülbağ, 2006). The same researcher emphasized 
that the number of neurons is of great importance 
to achieve generalization. In general, a very small 
number of neurons normally causes less learning, 
ie poor learning, while an excessive number of 
neurons indicates that it can lead to over learning, 
or memorization. The problem of finding an optimal 
network architecture complicates the solution because 
each unique architecture has its own unique set of 
suitable parameters (Kermani et al., 2005). The choice 
of the number of neurons is very important in ANNs 
as it is one of the determining factors in distinguishing 
data groups. Using less than necessary number of 
neurons in the hidden layer results in less sensitive 
output than input data. Likewise, if more neurons are 

used than necessary, difficulties arise in processing 
new types of data groups within the same network 
(Çetin et al., 2006). While creating the structure of the 
ANNs, the number of neurons (Nn) is decided by trial 
and error method (Yıldırım, 2013; Kaftan et al., 2017). 

At the stage of determining the appropriate model, 
the number of neurons in a certain range, with a certain 
amount of increase is given to the algorithm, and then 
the artificial neural network model is selected with the 
highest percentage of accuracy (Gülbağ, 2006). In the 
literature, researchers have determined the number of 
neurons in increasing values with different number 
intervals. Gülbağ (2006) created ANNs models with 
the number of neurons increasing by 10 between 0 
and 100. Küyük et al. (2009) compared the models 
with an increasing number of intermittent neurons 
increasing by 1 from 1 to 20 in their study and created 
an artificial neural network model with 5 neurons with 
the least error, that is, the best result. Yıldırım (2013) 
created ANNs topology with the number of neurons 
increasing by 2 between 0 and 22. Kaftan et al. (2017) 
created their own network network models by using 
the number of neurons increasing by 1 between 1 and 
6.

In this study, before the application of the ANNs 
Method, the models with the number of neurons in 
increasing intervals of 5 from 1 to 25 were compared. 
Then, the number of neurons (Nn = 10 for Ratio-C, 
Nn = 5 for Ratio-log S, Nn = 5 for Ratio-Duration) 
was determined for both parameter groups that were 
different from each other. An artificial neural network 
model has been created with the least error, that is, the 
number of neurons that give the best result. Training 
continued until the determination coefficient (R2) 
approached 1. When the value of the determination 
coefficient (R2) approaches 1, it actually means the 

Figure 6 - Elements of network topology (Gülbağ, 2006).
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stopping criterion. At the same time, this means 
that the learning algorithm is successful for these 
parameters on the network structure created. Once the 
proper value has been obtained, the network has been 
tested.

Since it is necessary to decide on the number of 
neurons first, the number of neurons obtained in the 
following table (Table 2) is obtained by trial and error 
method. While creating an artificial neural network 
suitable for the problem in this study, the obtained 

Figure 7- Artificial neural network structure for seismic events a) ratio versus C, b) ratio versus logS, c) ratio versus 
duration.

Table 2- The change of the total number of data and its relation with the Number of Neurons (Nn) for the parameter pairs belonging to the 
Manisa study area. Parameter pair for all data set belonging to KULA station Criteria: 1: Ratio-C, 2: Ratio-logS, 3: Ratio-Duration.

Criteria ANNs (%)
Nn:5

ANNs (%)
Nn:10

ANNs (%)
Nn:15

ANNs (%)
Nn:20

ANNs (%)
Nn:25

1 88 100 100 88 100
2 100 100 100 96 96
3 100 100 100 100 100
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accuracy percentage values are shown in table 2 
against the number of neurons determined for each 
parameter pair. 

Since the number of neurons is decided according 
to the accuracy percentage values in the ANNs 
method, the number of neurons in the situation with 
the highest accuracy percentage value is selected. 
But if the accuracy percentage values are equal, 
the lowest value of the number of neurons is taken. 
This is because the artificial neural network model is 
desired to be less complex (Gülbağ, 2006). Therefore, 
Nn: 10 for the Ratio-C parameter pair, and Nn: 5 for 
Ratio-logS and Ratio-Duration parameter pairs were 
selected according to the ANNs method.

In addition, the training algorithm used in this 
study is Levenberg-Marquardt and the activation 
function is Tangent-Sigmoid activation function. 
Application of Levenberg-Marquardt ANNs learning 
has been explained in some studies (Hagan and 
Menhaj, 1994; Kermani et al., 2005). This algorithm 
(up to several hundred weights) has been shown to be 
the fastest method for advanced feed-forward ANNs 
learning. At the same time, the effective representation 
of the function in matrix form, as in the MATLAB 
programming language, offers an important solution 
in some studies (Charrier et al., 2007; Matlab, 2011).

With the help of MATLAB programming language 
"nntool", ANNs model with inputs, weights and 
activation function was developed and Levenberg-
Marquardt was chosen as the training algorithm 
(Levenberg, 1944 and Marquardt, 1963) (Matlab, 
2011) since this training algorithm has an important 
role in the functioning of this process. Kipli et al. 
(2012) also used the Levenberg-Marquardt training 
algorithm in their studies.  

For the network architecture determined in this 
study, the hyperbolic tangent sigmoid activation 
function, also known as the tangent sigmoid activation 
function, is used. Tangent-Sigmoid, , describes 
the neuron output with respect to the local induced 
υ field. In fact, this activation function assumes a 
continuous function in the value range from -1 to 
+1. Therefore, the activation function expresses the 
positive function of the induced local area, as seen in 
equation 4.  

 
(4)

This function is shown in combination as a sign 
function. For the corresponding form of the sigmoid 
function, the hyperbolic tangent sigmoid function was 
used in the form as shown below:

 (5)

The hyperbolic tangent sigmoid activation function 
takes positive and negative values as indicated in 
equation 5 (Haykin, 2009). 

Therefore, the hyperbolic tangent function, which 
was examined at the beginning, is used for values that 
provide input to all output layers except output layer. 
The hyperbolic tangent sigmoid activation function is 
defined as in equation 6.  

 (6)

In equation 6,  is "Hyperbolic tangent sigmoid 
activation function". The change of the function is [-1 
1] and this function varies according to the total input 
and the number of neurons. (Gradshteyn and Ryzhik, 
2007). 

3.2.3. Preparation of Data Set for ANNs Network 
Topology 

After the number of neurons is determined, data 
sets of inputs and outputs are started to be arranged. 
After the normalization process, a new data set is 
created by randomly selecting a certain percentage 
of the data as training data and the rest as test data 
from the whole data set. Similarly, Kermani et al. 
(2005) randomly selected their data in their study. The 
reason for this is that the training data is trained with 
the learning algorithm used in ANNs and the training 
is completed when the determination coefficient (R2) 
value approaches 1. The reason for continuing the 
ANNs process with test data is to provide the rule that 
“The designed artificial neural network has learned the 
learning algorithm with training data, so it can test its 
knowledge with test data”. Then, the obtained results 
are compared with the test outputs and the accuracy 
percentage is calculated.

 

 



85

Bull. Min. Res. Exp. (2021) 164: 75-92

The determination coefficient (R2) values 
corresponding to the number of neurons (Nn) values 
determined by ANNs method for ratio versus C, ratio 
versus logS and ratio versus duration values in Manisa 
are given in table 3. It is seen in this table that the R2 
values are different for each parameter pair. When R2 
values are close to 1, it can be said that the created 
artificial neural network structure is successfully 
created according to these parameter pairs. The R2 
values seen in table 3 are accepted as a stopping 
criterion for the feed-back learning algorithm that 
we use in this study. It shows that when the R2 value 
approaches 1, the predicted artificial neural network 
structure has been successfully learned. The number 
of neurons (Nn) is designed to increase by 5 between 
5 and 25 (Table 3).

R values alone are not sufficient to decide the 
number of neurons (Nn) representing the model, they 
are only a stopping criterion. Accuracy percentages of 
ANNs models corresponding to these neuron numbers 
selected with the help of table 3 are shown in table 4.

Accordingly, it was found that the accuracy 
percentage values obtained by the ANNs method were 
high and this method was also successful. In addition, 
the numbers of earthquakes and quarry blast in the 
training and test data of KULA data are shown in table 
5.

For ANNs method, amplitude ratio versus 
complexity (C), logS and signal duration values are 
given in figure 8a, b, c.  

Different researchers prepared data sets using 
different percentage values to distinguish between 
training data and test data. Ursino et al. (2001) used 
50% of the data set as training set and the other 50% 
as test data. Gülbağ (2006) created the ANNs data set 
as 84% training data and 16% test data in his study. 
Yıldırım et al. (2011) organized 25% of the data set 
as training and 75% as test data in their study, in 
accordance with their own problems. Kundu et al., 
(2012) allocated 51% of their data as training data 
and 49% as test data. In addition, Yıldırım (2013) 
divided 80% into training data and 20% as test data by 
selecting random data from the data set in his study.  
Kaftan et al. (2017) separated 85% of their data as 
training data and the remaining 15% as test data.

In this study, random data was selected from the 
whole data set belonging to the KULA station, and 
70% of the data was divided into training data and 
30% as test data. In this case, since all data is 77, 
training data is 53 and test data is 24.

In addition, reasonable results were obtained by 
applying the k-fold cross validation method (James et 
al., 2017) to the data. Thus, by obtaining reasonable 
results similar to the high accuracy percentages 
obtained by the ANNs method, the ANNs method was 
once again verified.

Each pair of parameters used in the LDF method is 
also used in the second method, the ANNs method, to 
distinguish earthquake and quarry blast data.

Table 3- The change in the relationship between the coefficient of determination (R2) and the number of neurons (Nn) for the parameter pairs 
belonging to the Manisa study area. Parameter pair for the data set of the Kula station Criteria: 1: Ratio-C, 2: Ratio-logS, 3: Ratio-
Duration. 

Criteria
Determination Coefficient

Nn:5 Nn:10 Nn:15 Nn:20 Nn:25
1 0.96 1 1 0.96 1
2 1 1 1 0.93 0.93
3 1 1 1 1 1

Table 4- The change of the number of incorrectly defined earthquakes and quarry blasts with the number of data in the training and test data set 
for the whole data set of the KULA station using the ANNs method, and the percentage of accuracy. 

Criteria Station Total
Number of Data

Number of Data 
in the Training Set

Number of Data 
in the Test Set

Misclassified 
Earthquake (ME)

Misclassified Quarry 
Blast (MQB) ANNs (%)

1 KULA 77 53 24 0 0 100
2 KULA 77 53 24 0 0 100
3 KULA 77 53 24 0 0 100
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Figure 8- Accuracy percentage values obtained by ANNs method according to parameter pairs for KULA data. (a) 100% for ratio-C parameter 
pair; (b) 100% for ratio-logS parameter pair and (c) 100% for the Ratio-Duration parameter pair.

Table 5- Number of training and test data modeled for the KULA region. The accuracy percentages obtained from the classification of the data 
set of the KULA station (Criteria 1: Ratio-C, 2: Ratio-logS, 3: Ratio-Duration) using the ANNs method are respectively 100%, 100% 
and 100%.

Training Data Set* Test Data Set**

Criteria Station Total
Number of Data

Number of Data 
in the Training Set

Earthquake      
(E)

Quarry Blast
(QB)

Number of Data 
in the Test Set

Earthquake 
(E)

Quarry Blast
(QB)

1 KULA 77 53 31 22 24 19 5

2 KULA 77 53 31 22 24 19 5

3 KULA 77 53 31 22 24 19 5

Training Data Set* = Training Set; Test Data Set ** = Test Set
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The accuracy percentage of the method was 
calculated by testing the data prepared with the help of 
MATLAB software (Matlab, 2011). ANNs method was 
applied for each parameter pair (C against Ratio, log S 
against Ratio and Duration against Ratio) and accuracy 
percentages were obtained for each. In addition, the 
number of neurons for Ratio versus C was taken as 
10, for Ratio versus log S as 5, and for Ratio versus 
Duration, as 5. Accuracy percentages obtained from 
LDF and ANNs methods are given in table 6. 

4. Results and Discussion

In this study, while LDF and ANNs methods 
were applied to the data in Manisa region for the first 
time, earthquakes and blasts were distinguished from 
each other. In order to distinguish earthquake and 
quarry blast events, 77 seismic events with ML ≤ 3.5 
magnitude recorded at KULA station between May 
2009 and June 2013 in the region between latitudes 38-
39.30˚N and longitudes 28-29.30˚E were examined.

From the vertical component velocity seismograms 
recorded in the KULA station in the study area, 
parameters such as the ratio of the maximum S-wave 
amplitude to the maximum P-wave amplitude, the ratio 
of the strengths of the two time windows defined in 
the seismogram (C) and the signal duration (Duration) 
are determined, and their relationship with each other 
is examined by LDF and ANNs methods. 

The results obtained by LDF and ANNs method 
for each parameter pair (Ratio-C, Ratio-logS and 
Ratio-Duration) of the data set belonging to KULA 
are given in table 6. In both methods, earthquakes 
and explosions were determined with high accuracy 
percentages.

As a result of the study, 39 (51%) of the 77 seismic 
events examined were determined as quarry blasts and 
38 (49%) as earthquakes (Figure 9).

Table 6- Comparison of accuracy percentage values according to LDF and ANNs methods for the data set of KULA station (Criteria: 1. 
Ratio-C, 2. Ratio-logS, 3. Ratio-Duration).

Criteria Method Percentage of Accuracy (%)

1
LDF 94

ANNs 100

2
LDF 93.5

ANNs 100

3
LDF 89.6

ANNs 100

Figure 9- Earthquakes and blasts, ML ≤ 3.5, occurred in the study area between May 2009 and February 2014. The KULA 
station is marked with a blue triangle (KRDAE, BDTIM).
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In this study, it was understood that the number of 
neurons is a very important criterion for ANNs. The 
reason for this is that the number of neurons directly 
affects the results in the creation of the artificial neural 
network topology. This shows that if the number of 
neurons is correctly decided during the preliminary 
study before the ANNs method is applied, the accuracy 
percentage value will be higher. In addition, when the 
ANNs method is applied, when the determination 
coefficient (R2) value approaches 1 during training, 
the training is stopped and then, the test is started and 
information about the learning process is provided. 
In other words, the determination coefficient is a 
stopping criterion.

Comparing the differentiation accuracy 
percentages obtained by LDF and ANNs for different 
parameter pairs, it is seen that both methods are 
successful in distinguishing earthquakes and blasts 
from each other, but the ANNs method is more 
successful than the LDF method (Figure 5a, b, c, 
figure 7a, b, c; table 6). 

In addition, when international and Turkish 
scientific studies are examined, it is seen that LDF 
and ANNs methods are frequently used to distinguish 
blasts from earthquakes in different study regions. 
Ceydilek and Horasan (2019) used the LDF method 
at four stations (AKHS, BLN, CAM and KTT) to 
distinguish earthquakes and explosions in the Manisa 
region. The accuracy percentages for the Ratio-logS 
parameter pair obtained from the events recorded by 
each of the AKHS, BLN, CAM and KTT stations 
are 94.4%, 95.8%, 90.0%, 93.2%, respectively. 
The accuracy percentages for the Ratio-Duration 
parameter pair obtained from the events recorded by 
the same stations are 91.2%, 89.6%, 91.4%, 88.6%, 
respectively. In this study, 94%, 93.5% and 89.6% 
accuracy values were obtained with the LDF method 
for Ratio-C, Ratio-logS and Ratio-Duration parameter 
pairs, respectively. It is seen that the results obtained 
from this study are compatible with the results 
obtained by Ceydilek and Horasan (2019) in Manisa 
region.

In addition, the LDF method is one of the most 
popular and successful methods used in earth sciences 
to distinguish between natural and artificial seismic 
events. Horasan et al. (2009) obtained the accuracy 

percentage values with the Ratio-logS parameter pair 
for İstanbul-Gaziosmanpaşa, Çatalca, Gebze-Hereke, 
and İstanbul-Ömerli regions as 98.6%, 93.8%, 97.7% 
and 95.8%, respectively. Yılmaz et al. (2013) defined 
the accuracy percentage values as 96.3%, 89.3%, 
100%, 100%, 96.5% and 100% for KTUT, ESPY, 
BAYT, PZAR, GUMT and BCA stations in Trabzon, 
respectively. Badawy et al. (2019) applied the LDF 
method to the Ratio versus logS values in Egypt, and 
the accuracy percentages for AYT, MYD and GLL 
stations were 91.7%, 83.7% and 83.2%, respectively. 
By applying the same method to Spectral Ratio values 
against C for the same study, Badawy et al. (2019) 
obtained the accuracy percentages as 95.7%, 98% and 
98.4% for AYT, MYD and GLL stations, respectively. 
These values show that the method gives successful 
results.  The accuracy percentages of the parameters 
may vary depending on the number of data, geological 
features and local ground effects. 

ANNs method has also been used for about the 
last decade to distinguish natural and artificial seismic 
events from each other. Yıldırım et al. (2011) used 
three methods to distinguish natural and artificial 
seismic events in and around İstanbul.  They achieved 
99% accuracy with Back Propagation - Feed Forward 
ANNs (BPNNs), 97% accuracy with Probabilistic 
Artificial Neural Networks (PNN) and 96% accuracy 
with Fuzzy Logic Systems (ANFIS). In this study, 
the accuracy percentage values obtained by using the 
BPNNs learning algorithm with the ANNs method 
applied for the KULA station and its vicinity is 100% 
for each pair of parameters. In other words, accuracy 
percentage values close to each other were obtained. 
In this study, the BPNNs learning algorithm preferred 
in the ANNs method has been quite successful in 
distinguishing seismic events from each other. 

In addition, the determination coefficient (R2) 
values corresponding to the number of neurons (Nn), 
which are important in the ANNs method - 0.96 and 
1 for the Ratio-C parameter pair, 0.93 and 1 for the 
Ratio-logS parameter pair, and 1 for the Ratio-Duration 
parameter pair - was obtained at different value ranges 
for all neuron count values ranging from 25 to 5 
increments (Table 3). This situation indicates that the 
BPNNs learning algorithm used in the artificial neural 
network architecture created in this study is successful 
on these parameters.
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In addition, if we compare the results obtained 
with LDF and ANNs methods with each other, 94% in 
LDF method and 100% in ANNs method for Ratio-C 
parameter pair; for the ratio-logS parameter pair, 
93.5% in the LDF method and 100% in the ANNs 
method; for the Ratio-Duration parameter pair, 89.6% 
accuracy was obtained in the LDF method and 100% 
in the ANNs method. 

In the LDF method, 39 of the 39 quarry blast 
events were determined as quarry blast in Table 1 for 
the Ratio-C parameter pair. Of the 38 events defined 
as earthquakes, 33 of them were earthquakes and 5 
of them were quarry blasts. Thus, earthquakes and 
explosions were distinguished from each other with 
94% accuracy with the LDF method. For the ratio-
logS parameter pair, 39 of 39 blasts were determined as 
blasts with the LDF method. Of the 38 events defined 
as earthquakes, 33 were determined as earthquakes 
and 5 were quarry blasts (Table 1). The accuracy 
percentage in the LDF method for this parameter 
pair is 93.5%. For the Ratio-Duration parameter pair, 
the accuracy percentage value obtained by the LDF 
method is 89.6%. These accuracy percentage values 
show that the method is successful. 

Accuracy percentage was evaluated by using only 
test data with ANNs method. The reason for this is 
to test the success of the learning algorithm used on 
the artificial neural network model. Accordingly, 19 of 
the 24 test data for each parameter pair were correctly 
identified as earthquakes and the remaining 5 as 
quarry blast. Thus, earthquakes and explosions were 
distinguished from each other with 100% accuracy 
by ANNs method. These results show that the ANNs 
method distinguishes earthquakes and explosions 
with high accuracy. Comparing the two methods 
with each other, both methods are very successful in 
distinguishing earthquakes and explosions from each 
other. In this application, it is seen that the ANNs 
method is more successful than the LDF method.  

Studies to distinguish earthquakes and blasts from 
each other are important for seismicity studies in 
seismology. By correctly distinguishing earthquakes 
and blasts, it will contribute to the preparation of 
seismic catalogs with only earthquakes and therefore 
to more accurately determining active faults and 
seismic risk studies in the region. As in the relation 
proposed by Gutenberg and Richter (1949) given 
below, 

LogN=a-bM  (7)

coefficients a and b can be found. In this relation, a 
and b are constant coefficients. While b-value is the 
slope of the line obtained by plotting the logarithm 
of the number corresponding to the magnitude, the 
coefficient a is where the line intersects the LogN axis 
(Bayrak et al., 2013). With the help of these coefficients, 
the correct determination of the linear relationship 
between the numbers and magnitudes of earthquakes 
occurring in a certain area will provide correct results. 
In fact, by applying the linear regression method to 
calculate the Gutenberg-Richter (1949) relation for 
each seismic source zone in Kızılbuğa (2016) study, 
a and b parameters were obtained in the study area. 
Thus, by estimating the maximum acceleration values 
of earthquakes that may occur in that region, the 
earthquake hazard map of the region was obtained. 
Therefore, in the light of our study, parameters a and b, 
which will be determined correctly, will contribute to 
the preparation of earthquake hazard maps of a region.
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