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The most common blood disease worldwide is anemia, defined by the World Health Organization as a
condition in which the red blood cell count or oxygen-carrying capacity is insufficient. As both a disease
and a symptom, this condition affects the quality of life. Early and correct diagnosis of the type of anemia
is vital in terms of patient treatment. The increasing number of patients and hospital priorities, as well as
difficulties in reaching medical specialists, may impede such a diagnosis. The present work proposes a
system that will enable the recognition of anemia under general clinical practice conditions. For this sys-
tem, a model constructed using four different artificial learning methods. Artificial Neural Networks,
Support Vector Machines, Naïve Bayes, and Ensemble Decision Tree methods are used as classification
algorithms. The models are evaluated with a dataset of 1663 samples and used 25 attributes, including
hemogram data and general information such as age, sex, chronic diseases, and symptoms to diagnose
12 different anemia types. Data are collected by examining patient files at a university hospital in
Turkey. In addition to all the data used by the doctors, the model also utilized eight different datasets cre-
ated via particular feature selection techniques. The interface is designed to provide decision support to
both medical consultants and medical students. Data are classified using the four different algorithms
and an acceptable success ratio is obtained for each. Each model is validated using Classification Error,
Area Under Curve, Precision, Recall, and F-score metrics in addition to Accuracy values. The highest accu-
racy (85.6%) achieved using Bagged Decision Trees, followed by Boosted Trees (83.0%) and Artificial
Neural Networks (79.6%).
� 2020 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Anemia is the most common blood disease in the world [1].
According to the World Health Organization (WHO), anemia is a
condition in which the number of red blood cells and, conse-
quently, the oxygen-carrying capacity is inadequate to meet the
body’s physiological needs [2]. Anemia is also defined as a decrease
in the concentration of erythrocyte mass or blood hemoglobin and
hematocrit. Normal hemoglobin and hematocrit values vary
according to age and sex. If hemoglobin and hematocrit values
are below the threshold of normal values for the age and sex, then
anemia is present. The study conducted by Kiassebaum et al.
examined 189 countries, both sexes, and 20 different age groups
using data and resources from the 2010 WHO study on the global
burden of disease. They calculated the global anemia prevalence as
32.9%. Anemia is most commonly seen in children under five years
old and in women. The most frequently encountered type of ane-
mia is iron-deficiency anemia [3]. Since anemia, which affects the
quality of life significantly, is both a disease and a symptom that
accompanies many serious diseases, its treatment can be impera-
tive in many cases, making a correct diagnosis the first step toward
treatment.

The present study sought a multi-class probing solution using
artificial learning architecture. The aim is to develop a system that
will enable the recognition of anemia under general clinical prac-
tice conditions, as the increasing number of patients and hospital
priorities, as well as difficulties in reaching medical specialists,
may impede such a diagnosis. Applying this system in the primary
health care services jointly with the tests required for the diagnosis
of anemia will help non-specialist personnel working in these
health centers. Based on this system, patients who need to be
referred for treatment can be identified faster and more accurately.
The 12 types of anemia most commonly encountered in a province
in Turkey are classified by four different machine learning meth-
ods, with the bagged decision tree method having the highest suc-
cess rate. Since there is no provision for changing the content and
quality of the data, this study used a complete original dataset in
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which no numerical intervention is made. Moreover, the same
methods are applied by reducing the attributes using feature selec-
tion, and the results are compared. The use of real patient data con-
tributed significantly to the relevance of this study.

The paper is organized as follows: Section I gives an overview of
the problem of diagnosing anemia. Section II presents a review of
the related literature. Section III describes the anemia data used
in this study in addition to defining anemia and outlining the
methods used in its diagnosis. Subsequently, a summary of the
well-known artificial learning methods used in the study is given
and the architecture of the proposed artificial learning anemia
detection system is outlined. Section IV gives the results and eval-
uation of the models developed in this study. Section V summa-
rizes and discusses the results and compares them with those of
previous studies. Finally, in Section VI, the motivation for this work
and recommendations for possible future study topics are
presented.
2. Related works

Computer-aided decision making, and analysis constitute a
widespread field in the medical domain. In the present study, a
system is generated to assist medical practitioners in the diagnosis
of 12 different types of anemia. A review of previous studies on the
classification of anemia types is carried out, along with an exami-
nation of those conducted using similar methods but with different
data. Studies performed using hybrid models [4,5] are included as
well.

One of the early studies of computer-aided anemia diagnosis
was that of Beck et al., who designed a computer-aided system
for research in medical education. They published the PlanAlyzer
for diagnosis of heart disease in 1988 [6] and for anemia in 1989
[7]. This system aimed to elucidate and critique the approach of
students in diagnosing a widespread medical disorder. In a study
published in 1993, Lyon et al. reported that after testing and
assessment of the program, it was used for seven years to teach
the diagnosis of anemia and chest pain in the cardiology and hema-
tology departments of the Dartmouth School of Medicine [8]. In
1960, Lipkin compared the data characteristics of hematological
diseases with hospital data using a digital computer. For this, 49
patients and 20 diseases were selected, and the hospital data were
linked to the computer program. Differential diagnoses of the hos-
pital cases were then printed out in written form [9]. In 1976, Engle
et al. introduced a computer program called HEME that provided a
diagnostic analysis of 40 hematological diseases to medical consul-
tants and was designed as a rule-based system using the Bayesian
method [10].

Various algorithms developed to assist doctors in the diagnosis
of iron deficiency anemia have performed successfully [11–16].
Sanap et al. devised a system for classifying the severity of anemia
using complete blood count reports and the C4.5 decision tree and
support vector machine algorithms with the WEKA data mining
tool. They included the 10 numerical attributes of age, white blood
cell count (WBC), hemoglobin (HGB), red blood cell count (RBC),
hematocrit (HCT), mean cellular volume (MCV), mean cellular
hemoglobin (MCH), mean cellular hemoglobin concentration
(MCHC), red cell distribution width (RDW), and platelet count
(PLT) and four classes of anemia types: normocytic (anemia of
chronic disease), microcytic (iron deficiency and thalassemia),
macrocytic (Vitamin B12 and folate deficiency), and microcytic (re-
nal anemia). The success rate of the C4.5 decision tree algorithm
was 99.42%, which surpassed the support vector machines with a
success rate of 88.13% [17]. In the study conducted by Amin and
Habib, the full blood count parameters of WBC, RBC, HGB, HCT,
MCV, MCHC, PLT, neutrophils (NEUT), lymphocytes (LYMP), mono-
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cytes (MONO), eosinophils (EO), and basophils (BO) and the inter-
pretation value of age were used as the data input. The classes
included chronic anemia, eosinophilia, microcytic hypochromic
anemia, normocytic anemia, neutrophil leukocytosis, neutrophil,
unknown findings, and high erythrocyte sedimentation rate
(ESR). They used the J48 decision tree, multi-layered perceptron,
and Naïve Bayes as classifiers and achieved success rates of
97.16%, 86.55%, and 70.28%, respectively [18]. Iron deficiency ane-
mia and thalassemia are two types of microcytic anemia that are at
risk of being confused [19]. In a research article, a differential diag-
nosis of microcytic anemia was made with discriminant analysis
using a training set consisting of 200 beta-thalassemia cases, 65
alpha-thalassemia cases, 170 iron deficiency anemia cases, and
45 cases having both iron deficiency anemia and beta-
thalassemia [20]. Jamei and Talarposhti developed an artificial
neural network (ANN) model with pattern-based input selection
for iron deficiency anemia and b-thalassemia trait discrimination.
This method consisted of the decision-making ability of the ANNs
combined with that of a human expert. Using complete blood
count results, they devised a coefficient rule base and determined
the multilayer perceptron neural network input according to the
calculated similarity. When compared with the performances
reported by various authors using ANFIS, ANN, MLP, SVM, RBF,
PNN, and KNN, their method was shown to have achieved the high-
est accuracy rate of 99.5% [21]. In 2015, Kishore et al. published a
study using age, sex, HGB, MCV, MCH, and HCT values as input, and
iron deficiency and Vitamin B12 deficiency as output. They devel-
oped a threaded ID3 approach by examining ID3 and non-threaded
ID3 decision tree algorithms as methods. Using 480 data items,
they tested the system with both threaded and non-threaded ID3
and Gini algorithms and reported that the method they found
was usable [22].

Artificial neural networks can be used in a wide variety of areas.
Yavuz et al. conducted a study for the diagnosis of iron deficiency
anemia in women. Classification using ANNs and an artificial
immune system (AIS) was compared with the use of KNN and
the regression tree Gini algorithm. The classification performance
using the Gini-based decision tree method trained by the AIS was
more successful than that of the KNNmethod and ANNs [16]. Shaik
and Subashini presented a fuzzy logic approach for anemia diagno-
sis. They used HGB, HCT, MCV, MCHC,WBC, reticulocyte, total iron-
binding capacity (TIBC), serum iron, and hyper-segmented white
cell (HSWC) laboratory test results as input parameters. As output,
they used six anemia types, which included aplastic, sideroblastic,
megaloblastic, chronic, myelophthisic, and iron deficiency anemias
[23]. Dalvi and Vernekar conducted a study to determine the most
suitable method of classifying red blood cells for anemia diagnosis.
They used five ensemble learning methods (AdaBoost, bagging,
stacking, voting, and Bayesian boosting) and four classifiers (k-
nearest neighbor, Naïve Bayes, decision tree, and ANNs) [24]. Bel-
ginova et al. presented a rule-based approach to the diagnosis of
iron deficiency anemia. They proposed a decision support system
for specialist medical consultants that included patient data (e.g.,
identification, socio-economic status, medical history, complaints
or sensations, medical indicators, and statistical information on
the disease). Using these data enabled the consultant to make more
accurate decisions concerning the disease [25]. Dimauro et al. con-
ducted a study on predicting the hemoglobin value of patients
using a non-invasive device capable of analyzing an image of the
conjunctival region. They tested this KNN classifier on 113 individ-
uals and obtained good results [26]. Complete blood count (CBC)
testing is used to identify anemia and other hematological disor-
ders. However, diagnosis of iron deficiency anemia and tha-
lassemia depends on a mean cell volume (mean corpuscular
volume-MCV) of<80 fl oz (fluid ounces) as an inconsistent and
ambiguous feature. In a study conducted in 2005, Yeh and Cheng



Table 1
Review of relevant literature.

DATA METHODS DISEASE/CLASS REFERENCE

MCV, MCH, MCHC,
HGB, RBC

ANN, ANFIS IDA 11. AZARKISH
ET AL, 2012

HGB, MCV, SI, TIBC,
FERRITIN

FFN, CFN, DDN,
TDN, PNN, LVQ

IDA 12. YILMAZ,
BOZKURT
2011

SERUM IRON,
SERUM IRON
BINDING
CAPACITY,
FERRRITIN

DECISION TREES IDA 15. DOĞAN,
TÜRKOĞLU,
2008

MCV, RBC, HGB,
HCT, MCH, MCHT

ANN, DECISION
TREES, AIS

IDA 16. YAVUZ ET
AL, 2014

AGE, WBC, HGB,
RBC, HCT, MCV,
MCH, MCHC,
RDW, PLT

DECISION TREES,
SWM

NORMOCYTIC,
MICTROCYTIC,
MACROCYTIC,
RENAL ANEMIA

17. SANAP ET
AL 2011

WBC, RBC, HGV,
HCT, MCV,
MCHC, PLT,
NEUT, LYMPH,
MONO, EO, BO,
AGE

DECISION TREES,
MLP, NAIVE
BAYES

CHRONIC
ANEMIA,
EOSINOPHILIA,
MICROCYTIC
ANEMIA,
NORMOCYTIC
ANEMIA,
NEUTROPHIL,
UNKNOWN
FINDINGS, ESR

18. AMIN,
HABIB, 2015

CBC ANN IDA, BETA
THALASSEMIA

21. JAMEI ET
AL, 2016

AGE, SEX, HGB,
MCV, MCH, HCT

DECISION TREES
(ID3, GINI)

IDA, VIT.B12
DEFICIENCY
ANEMIA

22. KISHORE
ET AL, 2015

RBC(IMAGES) ADABOOST,
BAGGING,
STACKING,
VOTING AND
KNN,
NAIVEBAYES,
DECISION TREES,
ANN

ANEMIA 24. DALVI,
VERNECAR,
2016

ERITROCYTE
IMAGES

DECISION TREES, ABNORMAL
ERYTROCYTE

29. MAITY ET
AL, 2012

HGB, MCV DECISION TREES,
NAIVE BAYES,
MULTILAYER
SENSOR

THALASSEMIA 30.
SETSIRICHOK
ET AL, 2012

DATA OF
DEMOGRAPHIC
HEALTH SURVEY
PROGRAM

DECISION TREES,
ASSOCIATION
RULES

CHILDHOOD
ANEMIA

31. MEENA ET
AL, 2019

ECHOCARDIOGRAM
VIDEO IMAGES

BPNN, SVM HEART DISEASES 32. BALAJI ET
AL, 2016

BREAST CANCER,
PIMA INDIAN
DIABETES,
PARKINSON’S,
THYROID

SVM BREAST CANCER,
PIMA INDIAN
DIABETES,
PARKINSON’S,
THYROID

33. SHEN ET
AL, 2016

BREAST CANCER,
PARKINSON’S

KERNEL EXTEME
LEARNING
MACHINE

BREAST CANCER,
PARKINSON

34. WANG ET
AL, 2017

BREAST CANCER,
DIABETES, ES

SVM BREAST CANCER,
DIABETES, ES

35. WANG,
CHEN, 2020

STUDENTS NATIVE
PLACE

SVM, MLP STUDENTS
NATIVE PLACE
IDENTIFICATION

36. VERMA ET
AL, 2020

STUDENTS NATIVE
PLACE

SVM, KNN,
RANDOM
FOREST, MLP

STUDENTS
NATIVE PLACE
IDENTIFICATION

37. VERMA ET
AL, 2020

LEUKOCYTE IMAGES BPNN, CNN LEUKOCYTE
CLASSIFICATION

38.
BEVILACQUA
ET AL, 2019

BREAST
TOMOSYNTHESIS
IMAGES

ANN, NON-
NEURAL
LEARNERS

BREAST CANCER
DIAGNOSIS

39.
BEVILACQUA
ET AL, 2019
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proposed a solution to this problem by using the hierarchical soft-
ware calculation technique of a rule-based software method. They
achieved 96% accuracy on 50 samples and reported that their
approach was more successful than traditional methods [27].
Allahverdi et al. published a study using the Takagi-Sugeno type
neural-fuzzy (neuro-fuzzy) network method to determine child-
hood anemia. According to their statistical analysis, they found
the errors in the system as �0.0018 MPE (mean percentage error),
0.2090 MAE (mean absolute error), 0.0511 MAPE (mean absolute
percentage error), 0.2743 RMSE (root mean square error), and
0.9957 R2 (regression coefficient). They showed that the predicted
anemias were very close to the measured values and reported the
system to be practical and usable [28]. Maity et al. designed and
developed an application to create automated anemia diagnosis
reporting for acquisition and management of patient blood pathol-
ogy information using the computer vision approach. The
improved image processing algorithm and data mining approach
could identify abnormal erythrocytes in order to analyze patient
medical information. The consultant C4.5 decision tree classifier
classified image samples with 98.1% accuracy and 99.6% precision
[29]. Setsirichok et al., in one of their articles, proposed a classifica-
tion of blood properties for a thalassemia scan via a C4.5 decision
tree, a Naïve Bayes classifier, and a multi-layered sensor. The CBC
properties selected were hemoglobin concentration (HBG) and
mean erythrocyte volume (MCV). The average accuracy of the clas-
sification performance was found to be 93.23% and 92.60% when
applying the Bayesian classifier and multilayer sensor. These
results showed a combination of Naïve Bayesian classifier or
multi-layer sensor with CBC and hemoglobin to be highly suitable
for automated thalassemia screening [30]. In 2019, Meena et al.
developed a decision support system using data mining methods
for anemia in children. In their proposed model, they used the deci-
sion tree and association rules methods and obtained successful
results [31]. Balaji et al. detected and diagnosed two important
heart diseases, dilated cardiomyopathy (DCM) and hypertrophic
cardiomyopathy (HCM), using backpropagation neural networks
(BPNN) [32]. Shen et al. conducted a study in which they used a
fruit-fly optimization algorithm for a parameter tuning scheme in
the SVM method. They used this method on breast cancer, Pima
Indian diabetes, Parkinson’s disease, and thyroid datasets and sta-
ted that they had achieved successful results [33].

In 2017, Wang et al. developed a method based on the chaotic
moth-flame optimization strategy for the Kernel extreme learning
machine. This method performs feature selection and parameter
optimization simultaneously. They successfully applied the
method to Parkinson’s and breast cancer datasets [34]. In 2020,
Wang and Chen used the SVM method together with the whale
optimization algorithm (WOA). Here, the chaotic and multiswarm
algorithm improved the SVM performance of parameter optimiza-
tion and feature selection. They applied their method to breast can-
cer, diabetes, and erythematous-squamous medical datasets and
reported that they had achieved successful results [35].

An examination of studies using similar datasets revealed that
they focused on diagnosing one or more general types of anemia
like microcytic, normocytic, and macrocytic anemias [17,18] or
thalassemia and iron deficiency anemia [19,20,21]. Table 1 sum-
marizes the reference literature examined.

Our studydiagnosed12different typesof anemiadescribed in the
WHO International Disease Classification (ICD) Codes. In addition,
the attributes used were mostly limited to a few blood parameters
only. This study used 25 different attributes that an experienced
medical consultant useswhen diagnosing these diseases. Moreover,
the data used in this study are completely original and include age,
sex, chronic diseases, and symptoms as well as blood parameters.
52
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Notable methods in these studies using medical data included
ANN, SVM, and decision tree-based methods and Naïve Bayes,
KNN, and rule-based approaches. The SVM, ANN, and decision trees
are successful methods that give good results and are also used in
non-medical studies. For example, Verma et al. compared the SVM
and MLP methods in determining the native place of students.
They showed that both models give good results [36]. In their other
study on the same subject, Verma et al. also used random forest
and KNN methods in addition to the SVM and MLP. They stated
that the random forest method gave the most successful result
[37].

Hence, the literature indicates that in particular the ANN, SVM,
and decision tree-based methods have been the most successful.
Therefore, it was deemed appropriate to compare these methods
in this study. Deep learning-based approaches are also used in
medical decision-making problems. For example, in 2017, Bevilac-
qua et al. used feature-based backpropagation NN and deep
learning-based CNN methods for the classification of leukocytes
[38]. In another study conducted in 2019, they also developed a
deep learning method using tomosynthesis breast images for
breast cancer diagnosis. They compared optimized ANN and
non-neural learner methods and used CNN for feature extraction
[39]. Because our data does not contain images and the number
of data items included are insufficient, deep learning methods
are not used in this study. However, in the near future, we are plan-
ning to do a deep-learning-based study by increasing the size of
our dataset.
3. Material and methods

In the present study, the aim is to develop a system that will
enable the recognition of anemia under general clinical practice
conditions. In other words, we aimed to teach the decision-
making process of an experienced medical consultant to the com-
puter program by transferring the process of diagnosing types of
anemia, as the most common form of hematological diseases. For
this purpose, we entered the data of patients who had presented
Fig. 1. Classification of anemia accordin
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to the hematology outpatient clinic with a pre-diagnosis of anemia
into the computer program and evaluated the examinations car-
ried out on the patients with anemia-related complaints. State-
of-the-art artificial learning methods used in the learning phase.
After the learning process, we tested the system using new data,
and investigated its ability to make decisions in the same way as
an experienced medical consultant. At this stage, we used the
ROC analysis method. The main outcome of the study is the trans-
ference of the decision-making method used by an experienced
medical consultant. Another outcome is the providing of decision
support to doctors and medical students. Moreover, this system
can also carry out patient follow-up procedures.

To determine the presence of anemia, first, the HGB value is
examined by the expert, as seen in Fig. 1. In the next step, the
MCV value is examined. If the MCV is<80, then the anemia type
is microcytic. If the MCV is between 80 and 100, then the anemia
type is normocytic. If the MCV is more than 100, then the anemia
type is macrocytic. After the first phase of identification, the expert
may require further investigations and advanced tests for a definite
diagnosis. The detailed types and/or causes of anemia are shown in
Fig. 1.

In order for the computer to diagnose anemia like an expert
medical consultant, real patient data and the advice of an experi-
enced medical specialist are needed. This specialist provided infor-
mation on the features required and methods to be followed in the
diagnosis of anemia. Furthermore, the data required could only be
obtained through the approval of the Ethics Committee. Once eth-
ical approval is obtained, the data are transferred from the hospital
database to the program interface, as shown in Fig. 2. This interface
is based on the opinion of the experienced medical specialist.

Thus, as seen in Fig. 2, data from the interface are processed by
classifiers and the results are interpreted. Since the aim is to make
decisions in the same way as the experienced medical specialist
would decide, care is taken not to make any qualitative changes
in the data. The structure of the proposed method can be seen in
Fig. 3.

After the data are obtained using the program interface, four
basic models are developed for the classification process: support
g to erythrocyte morphology [40].



Fig. 2. Program interface used to provide data from clinical database.
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vector machines (SVM), decision trees (DT), artificial neural net-
works (ANNs), and Naïve Bayes. These models are selected because
they are state-of-the-art classification methods and are expected to
give promising results. Finally, the developed model is recorded
and tested on new data and a performance evaluation is carried
out using receiver operating characteristic (ROC) analysis [41].
Besides each model is validated using classification error, AUC, pre-
cision, recall, and F-score metrics in addition to accuracy values.
3.1. Dataset

The data used in the study are actual patient data obtained from
the Düzce University Research and Application Hospital with per-
Fig. 3. Flow chart of the present work.
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mission from the Hospital Ethics Committee. In accordance with
the Turkish law for the protection of personal data, the ethics com-
mittee had to be informed as to the kind of data we wanted to use.
Therefore, we consulted an experienced medical specialist and
determined the attributes she uses to diagnose anemia types. All
the attributes used in the dataset are shown in Table 2.

In addition to those seen in Table 2, there are also other attri-
butes in the raw dataset that enabled us to organize our data.
The archive number is a unique attribute used to identify a patient
in the hospital records. From the admission number of the patient
and the approval date, we could determine how often the same
patient had applied to the clinic. Other Information consisted of
patient histories not included as attributes for this study. Our data
consisted of only 30 attributes. As explained above, four of them
are not used. Information such as patient age, sex, and the presence
of symptoms and chronic diseases are attributes that play an
important role in determining anemia type. Bilirubin values in
the blood analysis are used to assess liver and gall bladder func-
tion. The C-reactive protein (CRP) provides information about the
presence of inflammation in the body. Iron values in the blood
are used in the evaluation of all types of anemia, iron deficiency,
and iron poisoning. The ferritin value is used in the diagnosis of
iron deficiency anemia, chronic disease anemia, and thalassemia
and is also important for monitoring iron-loading treatment. Folate
refers to the folic acid value in the blood and is used in the evalu-
ation of megaloblastic and macroscopic anemia as well as being
used to monitor the treatment of folate deficiency anemia. The
hematocrit (HCT) shows the amount of hemoglobin and erythro-
cytes present in the blood. The hemoglobin (HGB) shows the total
amount of hemoglobin present in blood and is the first value that
indicates anemia in an investigation of complete blood count
parameters. The creatinine value in the blood is used in the evalu-
ation of kidney function. The mean cellular hemoglobin (MCH)
shows the total amount of hemoglobin in the erythrocytes. The
mean cellular hemoglobin concentration (MCHC) is the percentage
of hemoglobin concentration in the erythrocytes. The mean cor-
puscular volume (MCV) is the average size of the red blood cells
carrying oxygen. The NEUT is the number of neutrophils in the
blood and the PLT is the number of platelets, whose function is
to enable blood to clot. The red blood cell count (RBC) is the num-
ber of erythrocytes present in the blood and the red cell distribu-
tion width (RDW) shows the distribution width of the
erythrocytes in the blood. The total iron-binding capacity (TIBC)
and unbound iron-binding capacity (UIBC) are also important
parameters used to diagnose anemia types. Vitamin B12 is an
essential vitamin for hematopoiesis and normal neuronal func-
tions. In the case of low vitamin B12, vitamin B12 deficiency ane-
mia may be considered. The white blood cell count (WBC) is the
number of leucocytes in the blood. These act as the body’s defense
and are responsible for the immune system [40,42,43].

There are 1663 data ıtems in the dataset. The distribution of
these data according to diagnosis is given in Table 3. The distribu-
tion of diseases associated with anemia is irregular and unbal-
anced. There were 1109 female and 554 male patients in our
dataset. Women are known to have a high prevalence of anemia
and these data confirm this situation. Iron deficiency anemia, con-
stituting 21% of the dataset, is the most common type of anemia
seen in the region, while the least common is the thalassemia trait.

However, it should be kept in mind that to obtain these data for
use in our study, the ICD codes are limited to between D50 and
D64.9 and the attributes are limited to 30 different features. There-
fore, the attributes needed to diagnose anemia-associated diseases
are selected on the recommendation of the experienced medical
specialist.

This study is conducted in Düzce province, Western Black Sea
Region of Turkey. The anemia types listed here are the 12 most



Table 2
List of attributes in the dataset.

Attribute Name Type Min Max Avg

Age Numeric 20 109 55.4
Sex Numeric 0 1 0.6
Chronic Disease Numeric 0 1 0.6
Symptoms Numeric 0 1 0.5
CRP (C Reactive Protein) Numeric 0 27.6 1.2
D. Bilirubin (Direct Bilirubin) Numeric 0 11.3 0.2
Iron Numeric 4 377 77.8
Ferritin Numeric 0 2338.4 166
Folate Numeric 1 99.6 11.7
HCT (Hematocrit) Numeric 11 64.5 35.4
HGB (Hemoglobin) Numeric 1 22.9 11.6
I. Bilirubin (Indirect Bilirubin) Numeric �0.1 5.01 0.4
Creatinine Numeric 0.2 8 0.9
MCH (Mean Cellular Hemoglobin) Numeric 13.9 45.2 27.4
MCHC (Mean Cellular Hemoglobin Concentration) Numeric 25.6 38.2 33.1
MCV (Mean Cellular Volume) Numeric 49 126.6 82.7
NEUT (Neutrophil Count) Numeric 0 47.8 3.9
PLT (Platelet Count) Numeric 1 1239 260.7
RBC (Red Blood Cell Count) Numeric 1.2 45.2 4.3
RDW (Red Cell Distribution Width) Numeric 11.2 38.2 17.2
T. Bilirubin (Total Bilirubin) Numeric �0.02 5.7 0.7
TIBC (Total Iron-Binding Capacity) Numeric 104 697 353.8
UIBC (Unbound Iron-Binding Capacity) Numeric �9 676 273.1
Vitamin B-12 Numeric 13.1 2000 512.4
WBC (White Blood Cell Count) Numeric 0.7 431.3 7.6
Diagnosis Polynomial – – –

Table 3
Codes and distribution of diagnoses in the dataset.

ICD-10 Codes Diagnosis Count %

D64 Anemic 123 7.39
– Non-Anemic 184 11.06
D50 Iron Deficiency Anemia 351 21.10
D50-D52 Iron and Folate Deficiency Anemia 187 11.24
D50-D51 Iron and Vit. B12 Deficiency Anemia 164 9.86
D52 Folate Deficiency Anemia 234 14.07
D51-D52 Folate and Vit. B12 Deficiency Anemia 55 3.30
D59 Hemolytic Anemia 42 2.52
D63 Anemia of Chronic Disease 170 10.22
D56 Thalassemia 80 4.81
D57 Thalassemia Trait 23 1.38
D51 Vitamin B12 Deficiency Anemia 50 3.006
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common types of anemia in the province. As the data are taken
from a hospital, all the patients in the dataset had at least one
hematological disorder. The ‘‘non-anemic” patient group did not
consist of healthy individuals and for this reason, is not considered
as a control group. Since they are suffering from hematological dis-
orders outside the anemia group, the use of the term ‘‘non-anemic”
is considered appropriate.

This study used the data of patients who had applied to the
Hematology Outpatient Clinic at Düzce University Research and
Application Hospital for whom anemia and related diseases (ICD
codes D50.0 –D64.9) are entered as the diagnosis or pre-
diagnosis. The patient data used included: age, sex, chronic disease,
symptoms, CRP (C reactive protein), D. bilirubin (direct bilirubin),
iron, ferritin, folate, HCT (hematocrit), HGB (hemoglobin), I. biliru-
bin (indirect bilirubin), creatinine, MCH (mean cellular hemoglo-
bin), MCHC (mean cellular hemoglobin concentration), MCV
(mean cellular volume), NEUT (neutrophil count), PLT (platelet
count), RBC (red blood cell count), RDW (red cell distribution
width), T. bilirubin (total bilirubin), TIBC (total iron-binding capac-
ity), UIBC (unbound iron-binding capacity), vitamin B-12, and WBC
(white blood cell count).

Among the data of anemia-related diseases, the hemogram
had to be evaluated first. The interpretation of the hemogram
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is based on the WHO definitions of anemia [2] and the recom-
mendations of the Hematology Laboratory Guide [44] published
by the Turkish Society of Hematology (TSH) in October 2014.
According to these recommendations, when examining the data
of a patient, the hemoglobin values are considered first, with
HGB < 13 g/dL in male patients and HGB < 12 g/dL in female
patients described as anemia. Following that, patients had to
be classified as microcytic, normocytic, or macrocytic according
to the MCV value. The ferritin value of those with microcytic
anemia (MCV < 80) is then questioned, and iron deficiency or
thalassemia diagnoses noted accordingly. In patients who are
not suspected of iron deficiency (ferritin greater than 15 accord-
ing to TSH anemia guidelines), iron is assessed according to iron-
binding capacity. With this evaluation, we aimed for the differ-
ential diagnosis of iron deficiency or chronic disease anemia. In
each patient with anemia, vitamin B12 and folic acid values also
had to be evaluated and determined as vitamin B12 or folate
deficiency anemias accompanying other anemia types (iron defi-
ciency, chronic disease anemia, thalassemia, etc.) or especially as
macrocytic-defined anemias. In addition, other series (white
blood cells and platelets) of patients with anemia had to be eval-
uated and if these are not normal (either high or low values), a
peripheral smear had to order. According to WHO criteria, any
symptoms and findings that might require urgent transfusion
in those with severe anemia should receive immediate attention.
In addition, if there is significant evidence for the etiology of
anemia, it is vital to be on the alert for each type.

Anemia Types and Diagnostic Criteria:
Anemias constitute the most common blood disease group in

the world as well as in Turkey [1]. According to WHO, anemia is
a condition in which the number of red blood cells (and, accord-
ingly, their oxygen-carrying capacity) is insufficient to meet the
physiological needs of the body [2]. Anemia is also defined as a
decrease in erythrocyte mass or blood hemoglobin and hematocrit
concentration. Normal hemoglobin and hematocrit values vary
according to age and sex. Anemia is present when hemoglobin
and hematocrit values are below the lower limit of normal values
for the age and sex.
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The main causes of anemia include a deterioration in the mor-
phological (structural) and/or physiological functions of the ery-
throcytes. Anemias can occur for four main reasons:

1. Erythrocyte production disorder (insufficient erythrocyte pro-
duction by bone marrow)
a. Bone marrow malfunction, bone marrow failure (e.g., aplas-

tic anemia and infection-, drug-, or cancer-related bone mar-
row failure)

b. Impairment of erythropoietin synthesis, 90% of which is
released from the kidneys and plays a very important role
in the ripening of erythrocytes (e.g., chronic kidney failure,
hypothyroidism, and rheumatic diseases)

2. Structural and functional impairment of erythrocyte matura-
tion (e.g., iron deficiency, hemoglobin structure and function
disorders, lead poisoning, vitamin B12 deficiency, and folic acid
deficiency)
a. Early destruction of erythrocytes (hemolytic anemias)
b. Causes of erythrocyte destruction (e.g., erythrocyte mem-

brane disorders, erythrocyte enzyme deficiency, and
hemoglobinopathies)

3. Non-erythrocyte causes (e.g., immune, and non-immune
causes)

4. Blood loss (hemorrhaging)

Common clinical indications of anemia are weakness, fatigue,
and paleness. Bone and joint pain, enlarged lymph nodes, and
enlarged liver and spleen can be observed in leukemia and some
other hematological diseases. There may be symptoms like palpita-
tions, headaches, frequent infections, impaired nails, loss of appe-
tite, loss of taste, painful tongue, sores in the mouth, and the
desire to eat non-food substances like soil, cement, or ice (pica).
Patients with long-term anemia can tolerate anemia symptoms
more comfortably and may not have significant complaints
[2,40,45,46].

The first laboratory tests to be requested in the patient with
anemia are complete blood count and erythrocyte indices includ-
ing MCV (mean erythrocyte volume), MCH (mean erythrocyte
hemoglobin), MCHC (mean erythrocyte hemoglobin concentra-
tion), and RDW (erythrocyte distribution width).

Initial speculations as to the cause of anemia are obtained
through the patient history, physical examination, and test results.
Later, additional tests can be ordered for a definitive diagnosis [45].
The classification of anemia according to erythrocyte morphology
is as shown in Fig. 1.

Production disorder and, hypo-proliferative anemias are char-
acterized by a low reticulocyte production index and little or no
change in erythrocyte structure. Damage to the premature stem
cell pool of the bone marrow structure can occur as a result of ery-
thropoietin impulse or iron deficiency. Erythropoietin is a glyco-
protein hormone that acts as a cytokine (a group of proteins that
enable cells to communicate with each other) for erythrocytes. It
is produced in the kidneys and is the hormone responsible for
the control of erythrocyte production [46].

In ripening disorders, a low reticulocyte production index is
accompanied by a macrocytic or microcytic erythrocyte structure.
Impairment of erythrocyte precursor cell ripening order may be
due to folic acid and vitamin B12 deficiency, chemotherapy, or a
myelodysplastic or preleukemic condition. Because these are all
associated with nuclear maturation disorders, patients may have
macrocytic anemias, megaloblastic bone marrow structure, and
varying degrees of infectious erythropoiesis.

Patients with increased hemolysis-related erythrocyte destruc-
tion exhibit an increase of more than triple the normal balanced
reticulocyte index level and an erythrocyte structure that may or
may not be differentiated.
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The first step when classifying anemia is important for both
diagnosis and treatment. Treatment of the disease will also vary
according to functional impairment [43,47].

In the WHO disease classification guide, iron deficiency anemia
is included in the dietary anemia group (ICD codes D50-53)
together with vitamin B12 deficiency anemia and folate deficiency
anemia. Thalassemia, thalassemia trait, and hereditary and
acquired hemolytic anemias due to enzyme disorder are in the
hemolytic anemia group (ICD codes D55-59). The group of aplastic
and other anemias (ICD codes D60-64) includes aplastic anemia,
chronic disease anemia, and other anemias [48]. However, when
classified according to erythrocyte morphology, iron deficiency
anemia is included in the microcytic anemias, and vitamin B12
and folate deficiency anemias are included in the macrocytic ane-
mias. Moreover, situations where these diseases are seen together
were prevalent in the clinic. According to the classification given in
Fig. 1, iron deficiency anemia, thalassemia, and thalassemia trait
are included in the microcytic anemias. Although some chronic
disease anemias are microcytic, most of them are included among
the normocytic anemias. Hemolytic anemias are also included in
normocytic anemias. Vitamin B12 deficiency and folate deficiency
anemias are included in macrocytic anemias.

Iron deficiency anemia is the most common type of anemia. It is
the protein-containing iron structure in the center of hemoglobin
that allows red blood cells to transport oxygen from the lungs to
the tissues. This function cannot take place when body iron is lost,
and consequently, various symptoms such as weakness, fatigue,
and shortness of breath are seen. It is most common in women
and children. Measurement of MCV, iron, ferritin, and iron-
binding capacity values is important in the diagnosis. In addition,
the possibility of internal bleeding should also be eliminated. Iron
deficiency anemia can be treated with iron supplements and a diet
containing iron-rich foods [49,50].

Vitamin B12 plays an important role in red blood cell produc-
tion and the functioning of the nervous system. When the vitamin
B12 in the body is insufficient, healthy production and division of
red blood cells cannot be carried out. As a result, problems occur
with the passing of the RBCs from the bone marrow to the blood,
causing various bodily symptoms. The HGB, MCV, and vitamin
B12 values are important measurements in the diagnosis. Vitamin
B12 deficiency can be treated with adequate nutrition and vitamin
B12 supplementation [49,51].

Folic acid is a substance found in fruits, green leafy vegetables,
and meat. Deficiency occurs when its intake is inadequate, or it is
not sufficiently absorbed by the body. The serum folate level is an
important measurement in the diagnosis. Folic acid deficiency can
be treated with a folic acid-rich diet and supplements [51,52].

Chronic disease anemia is a type of anemia that accompanies
chronic diseases such as cancer and diabetes, heart, kidney, and
rheumatic diseases, infections, and inflammation, especially in
older individuals. Low levels of serum iron and total iron-binding
capacity are important measurements in the diagnosis. For the
treatment of this type of anemia, the underlying disease must be
treated first [53].

Thalassemia is a disease that occurs when few or no hemoglo-
bin chains can be produced. It is a genetic transition disease, and
therefore, the heterozygotes become carriers and the homozygotes
become ill. The HGB, HCT, erythrocyte count, and MCV, MCH, and
MCHC index values are important measurements in the diagnosis.
The transfusion is administered in the treatment of patients,
although not usually in the case of carriers. Thalassemia patients
must be observed throughout their entire life [53].

Hemolytic anemia can be defined as a condition in which the
red blood cells are destroyed at a faster rate than they are pro-
duced. The reason may be hereditary or acquired. Although the
patient’s history is important in diagnosis, laboratory methods
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such as complete blood count and peripheral smear, hemoglobin
electrophoresis, and bone marrow tests are also used. Medication,
surgical intervention, blood transfusion, and marrow and stem cell
transplantation can be applied in its treatment [49,53].

In our study, patients diagnosed with anemia are also diagnosed
with anemias other than those described above. In the WHO defi-
nition, the ICD 10 code D64 is included as ‘‘other anemias”. The
complete blood count and especially the HGB, HCT, and RBC values
are used in the diagnosis of anemia. Since it is a disease that signif-
icantly affects the quality of life, it is important to recognize and
treat the anemia type [43]. Ultimately, the classification is per-
formed with the 25 attributes included in Table 1. Since the data
are taken from the patient files individually, no null value is
included. Only the digitization and normalization of the data are
performed in the pre-processing.

3.2. Classifiers

In the present study, the performance of well-known classifica-
tion methods evaluated by creating a completely original dataset.
As methods widely used in the literature, ANNs, support vector
machines, decision trees, and Naïve Bayes are chosen as the classi-
fiers. These are state-of-the-art classification methods that give
promising results. In addition, these methods have been found to
produce successful results when used with medical data. There-
fore, these methods are applied and the results are compared.
The classification process is performed using the MATLAB�

R2020a version.

3.2.1. Artificial neural networks (ANNs)
The purpose of this study was to enable the computer to per-

form the diagnostic procedure in the same way as it is performed
by doctors. The ANN is a state-of-the-art method that roughly
models the learning process of the human brain and was consid-
ered to be a suitable method within the scope of this study. Just
as the human brain learns by analyzing samples, artificial neural
networks learn from samples as well. An ANN consists of intercon-
nected cells (‘‘neurons”) like the nerve cells in the human brain. In
the ANN model, each neuron must have inputs, weights, addition
and activation functions, and outputs [54]. Each input has a weight
that affects the activation level of the neuron. The output value is
reflected in the transfer function as the sum of the input signals
multiplied by the weights. The learning capacity of an artificial
neuron is determined by regulating the weights of the selected
learning algorithm [55]. In the ANN method, initially, a training
set is created and both inputs and outputs are given to the net-
work. The outputs produced by the network are then compared
with the actual outputs. After the error calculation is made, the
weights are updated, and this process iterated until the lowest
error rate is reached and the training process accomplished. In
the next step, the model created in the training process is run again
with a test set preferably consisting of different data, and the learn-
ing of the network is tested. A two-layered feed-forward neural
network model was used for this study. The basic structure of
the proposed neural network is presented in Fig. 4.

There were 1663 samples and 25 features in the database, as
introduced in the previous section. Therefore, the input layer of
Fig. 4. Structure of the proposed neural network algorithm.
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the ANN also consisted of 25 neurons. As an output, each sample
belonged to one of the 12 different classes. Furthermore, the neural
network model had 10 hidden layers, with each layer made up of
50 neurons. The sigmoid transfer function was selected as the acti-
vation function. Equation (1) shows the neural network’s sigmoid
transfer function, where � indicates inputs and f(x) indicates
output.

f xð Þ ¼ 1
1þ ex

ð1Þ

The neural network model designed for this study was a two-
layer feed-forward neural network, with sigmoid functions in the
hidden layer and softmax functions in the output layer. The train-
ing process was performed using a scaled conjugate gradient back-
propagation algorithm.

Nearly 60% of the dataset (997 samples) was used for the train-
ing process, 20% (333 samples) for the testing process, and 20%
(333 samples) for the validation process.

3.2.2. Support vector machines (SVM)
Support vector machines are among the supervised learning

methods that can be applied to classification or regression prob-
lems. The classification is performed by dividing the input space
of the dataset linearly or non-linearly. The linear decision line is
drawn so that the traced samples have a minimum distance
between each other, but maximum line spacing. It is a method that
gives good results in real-world applications [55]. The structure of
the SVM method is seen in Fig. 5.

The calculation for the hyperplane (H) is given in Equation (2),
where w indicates a set of weights, b indicates bias, and x indicates
input sample features.

H : w:xi þ b ¼ 0 ð2Þ
In the SVM method, the kernel function is one of the important

parameters for classifier success. For this study, three different ker-
nel functions were used: linear, cubic, and quadratic. The kernel
scale was selected automatically by MATLAB. Data regularization
and standardized parameters were also set to represent true
properties.

3.2.3. Decision tree (DT)
The decision tree classification process is a method of testing

whether a feature can be distinguished in the classes in a dataset.
Each feature found forms a branching condition of the tree. With
this method, all data in the dataset are intended to be placed in
Fig. 5. Structure of the SVM.
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one of the classes and in this way, a class definition is made at the
same time. The results are easy to understand and interpret [55].
This method also gives good results and is commonly used with
medical data. The structure of the decision tree is seen in Fig. 6.

The decision tree method used for this study was carried out
using two different ensemble methods: boosting and bagging.
Ensemble techniques are used in the solution of multi-class prob-
lems. The goal is to improve performance by grouping the binary
classes to form multi-classes. In the AdaBoost method, at each iter-
ation, the weights of misclassified samples of the decision tree are
increased and the weights of correctly classified samples are
reduced. In the subsequent iterations, the updatedweights are used.
Thus, the algorithm concentrates onmisclassified items. In the bag-
gingmethod, the data is divided into subsets and a learningmodel is
applied for each. Bagged trees are createdby combining apluralityof
decision trees and can give successful results where the classes are
categorical and nonlinear. In this study, a different decision tree
was created for each subset of the dataset. Accuracy was calculated
by taking account of the average performance of each tree [56].

3.2.4. Naïve Bayes
Naïve Bayes is amachine learning algorithmbased on Bayes’ the-

orem. In Naïve Bayes, when the class each data item belongs to is
clear, the goal is to create a rule that will determine the class label
of the next data item to arrive [57]. This circumstance is also called
conditional probability. It is based on theprinciple of the value taken
by the relevant attribute when the data class is labeled. When
applied to a dataset, this is expressed as in Equations (3) and (4).

P PCjSð Þ ¼ PSjPCÞ � PðPCÞ
PðSÞ ð3Þ

P PCjSð Þ ¼ PðSjPCÞ � P PCð Þ ð4Þ
Where,
PC: Parent Category,
S: Successful,
P (PC): The probability of the parent category,
P (S): The probability of the class label being successful,
P (PC | S): The probability of parent category when the class

label is successful,
P (S | PC): The probability that the class label is successful in the

case of parent category.

3.3. Feature selection

The objective of this study was to transfer the decision-making
process of the doctor to the computer. Therefore, it was necessary
to use the same data used by the doctor. However, the computer
learning process is done using various artificial learning methods.
Fig. 6. Decision tree structure.
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In artificial learning methods, the effects of the attributes given
to algorithms on the result are an important factor, and thus, the
use of feature selection methods is essential. When selecting attri-
butes, the basic process involves determining the weights for each
attribute and eliminating the attributes according to their weights.
The weight of an attribute is usually calculated in the range (0,1) or
(-1, +1). The closer the weight value is to 1 or �1, the more impor-
tant its effect will be on the result. If this value is close to 0, it does
not have much effect on the result and the attribute can be elimi-
nated. Numerous methods were used in this study for the selection
of attributes. These include information gain, information gain
ratio, principal component analysis (PCA), and correlation-based
attribute subset (CFS) selection. The WEKA and RapidMiner data
mining tools were used for this task. Information gain, information
gain ratio, and PCA-based feature selection processes were per-
formed using RapidMiner. Various methods were tried using
WEKA, but other than CFS, the methods selected all 25 attributes
and thus, the attributes could not be reduced. By applying these
four methods, eight different datasets were obtained in addition
to the original dataset. The attributes included in each dataset
can be seen in Table 4. Consequently, the classification algorithms
were run for a total of nine datasets and the results were
compared.
3.3.1. Information gain
The information gain of a feature in a dataset is the ability to

determine the class to which it belongs. For example, if the value
of an attribute in a dataset enables us to know the class to which
it belongs, the information gain of that attribute will be 1. Other-
wise, if the value of an attribute gives us no information about
its class, then the information gain of that attribute will be 0.
Essentially, in order to understand information gain, the theory
of entropy must be understood. Entropy can be defined simply as
the information contained in the data. Shannon’s entropy formula
is given in Equations (5) and (6) [58].

EðclassÞ ¼ �
Xc

i¼1
pilog2 pið Þ ð5Þ
Eðclass; attributeÞ ¼ �
Xv

j¼1

Cj

C
EðCjÞ ð6Þ

Here, c is the number of classes (the number of values the target
variable can take), pi is the probability that a random data is from
class i, j, v is the number of attributes (the number of values the
predictive variable can take), and C represents the class values.

If an attribute in the dataset has a different value for each class,
its entropy is 0. In other words, the class can be determined accord-
ing to the value of that property and there is no need to look at
other properties. In this case, the information gain is 1. The less
correlated a feature is with its class value, the lower the informa-
tion gain will be. The equation used for the information gain calcu-
lation is given in Equation (7).

InformationGain class; attributeð Þ
¼ EðClassÞ � EðClass;AttributeÞ ð7Þ
The Class and Attribute are represented accordingly in this

equation. After dividing the dataset into classes, the information
gain is obtained by subtracting the entropy value of the deter-
mined attribute from the entropy value of all classes. In entropy,
the importance of the attribute decreases as its value approaches
1, whereas, in information gain, the importance increases as its
value approaches 1.

The information gain values obtained for the present study are
shown in Table 5 and Fig. 7. Three different datasets were created
by selecting three attributes with a weight value greater than 0.5,



Table 4
Datasets created by feature selection.

Attributes CFS PCA Information Gain Information Gain Ratio

>0,1 >0,2 >0,5 >0,3 >0,4 >0,5

Age U U U

Sex
Chronic Disease
Symptom
CRP U

D.BILIRUBIN U U

IRON U U U U

FERRITIN U U U U U U U U

FOLATE U U U U U U U U

HCT U U U U

HGB U U U U U

I.BILIRUBIN U U U U

CREATININ
MCH U U U U

MCHC U

MCV U U U

NEUT# U

PLT U

RBC U U U U U

RDW U U

T. BILIRUBIN U U U U

TIBC U U U U U

UIBC U U U U

VITAMIN B12 U U U U U U U U

WBC U
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five attributes with a weight value greater than 0.2, and 13 attri-
butes with a weight value greater than 0.1.

3.3.2. Information gain ratio
The information gain ratio is the ratio of information gain to

intrinsic value. Basically, intrinsic value is the amount of informa-
tion needed to identify the class to which a data item belongs. In
cases where the information gain is not sufficient, the value of
the gain ratio can be applied. Equation (8) shows the calculation
of the information gain ratio.

InformationGainRatioðclass; attributeÞ

¼ E classð Þ � Eðclass; attributeÞ
EðattributeÞ ð8Þ
Table 5
Attribute weights by information gain.

Attribute Weight
Symptom 0,000
NEUT# 0,014
MCHC 0,048
CREATININ 0,048
CRP 0,055
RDW 0,062
WBC 0,072
Sex 0,087
PLT 0,088
Chronic Disease 0,089
D.BILIRUBIN 0,102
T. BILIRUBIN 0,103
Age 0,105
I.BILIRUBIN 0,105
MCV 0,123
RBC 0,124
IRON 0,131
MCH 0,133
HCT 0,184
TIBC 0,197
UIBC 0,244
HGB 0,257
VITAMIN B-12 0,694
FOLAT 0,813
FERRITIN 1,000

Fig. 7. Attribute weights by information gain.
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In the information gain ratio calculation, as the value of the
attribute approaches 1, its importance increases [59]. The informa-
tion gain ratio values obtained for the present study can be seen in
Table 6 and Fig. 8. Seven attributes with a weight value greater



T. Karagül Yıldız, Nilüfer Yurtay and Birgül Öneç Engineering Science and Technology, an International Journal 24 (2021) 50–70
than 0.5, 11 attributes with a weight value greater than 0.4, and 16
attributes with a weight value greater than 0.3 were selected, thus
creating three different datasets.
3.3.3. Principal component analysis (PCA)
The principal component analysis is a frequently used feature

selection method. To perform PCA, first of all, the relationship
between attributes must be determined. In the utilization of clas-
sification algorithms, having a large number of attributes that are
related to each other is undesirable. Having independent attributes
in the dataset ensures stronger results in the classification process.
Using PCA, numerous attributes correlated with each other are rep-
resented by fewer attributes with no correlation.

In the weight calculation made with PCA, the importance of the
attribute increases as the value approaches 1. The weight values
obtained for the present study are shown in Table 7 and Fig. 9.
With PCA, 16 attributes with a weight value other than 0 were
selected and a new dataset was created.
Table 6
Attribute weights by information gain ratio.

Attribute Weight

Symptom 0,000
Sex 0,095
Chronic Disease 0,097
MCV 0,263
PLT 0,304
CREATININ 0,309
WBC 0,310
Age 0,314
CRP 0,320
RDW 0,373
HGB 0,385
MCHC 0,417
NEUT# 0,417
UIBC 0,457
HCT 0,485
MCH 0,485
IRON 0,495
D.BILIRUBIN 0,506
I.BILIRUBIN 0,594
TIBC 0,598
RBC 0,609
T. BILIRUBIN 0,621
FOLAT 0,872
VITAMIN B-12 0,990
FERRITIN 1,000
Attribute Weight
Symptom 0,000
Gender 0,095
Chronic Disease 0,097
MCV 0,263
PLT 0,304
CREATININ 0,309
WBC 0,310
Age 0,314
CRP 0,320
RDW 0,373
HGB 0,385
MCHC 0,417
NEUT# 0,417
UIBC 0,457
HCT 0,485
MCH 0,485
IRON 0,495
D.BILIRUBIN 0,506
I.BILIRUBIN 0,594
TIBC 0,598
RBC 0,609
T. BILIRUBIN 0,621
FOLAT 0,872
VITAMIN B-12 0,990
FERRITIN 1,000

Fig. 8. Attribute weights by information gain ratio.
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3.3.4. Correlation-based feature subset selection (CFS)
This method aims to choose a set of attributes that can be useful

for classification. For an attribute to be effective, there should be a
high correlation of that attribute with the class, while it should be
less correlated with other attributes. Each attribute set is consid-
ered separately, and its correlation weight value is calculated.
The subset with the highest weight from the retrieved subsets is
presented to the classification algorithm. [60] The attributes in
the subset obtained for the present study can be seen in Fig. 10.
A total of 178 subsets were evaluated and the weight value of
the best subset was found to be 0.579. In this subset, seven attri-
butes (Age, Ferritin, Folate, HGB, MCV, T. Bilirubin, and Vitamin
B12) were selected and a new dataset was created.
3.4. Evaluation

For all methods, 10-fold cross-validation is used in this study. In
the cross-validation method, the dataset is divided into 10 differ-
ent subsets. When a group is a test set, the remaining nine groups
are used as training sets in turn. In this way, all the combinations
are tested so that each of the 10 datasets is a test set once, and a
performance value is found by taking the average of each result.

Receiver operating characteristic (ROC) analysis is used for per-
formance measurement in this study. The ROC analysis is an effec-
tive method for measuring the performance of machine learning
and data mining techniques [41,61]. The confusion matrix for



Fig. 9. Attribute weights by principal component analysis.

Table 7
Attribute weights by PCA.

Attribute Weight
UIBC �0.085
TIBC �0.061
PLT �0.009
HCT �0.002
HGB �0.001
RBC �0.001
Sex �0.000
Symptom 0.000
I.BILIRUBIN 0.000
MCHC 0.000
CREATININ 0.000
D.BILIRUBIN 0.000
T.BILIRUBIN 0.000
Chronic Disease 0.000
NEUT# 0.000
CRP 0.001
FOLATE 0.001
RDW 0.001
MCH 0.001
WBC 0.002
MCV 0.004
Age 0.013
IRON 0.024
FERRITIN 0.322
VITAMIN B12 0.941

Fig. 10. Attribute selection by CFS.
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ROC analysis is illustrated in Table 8. Accuracy, recall/sensitivity,
specificity, precision/confidence, F1-score, and AUC (area under
the curve) values are basically calculated as in Equations (9) –(14).

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð9Þ

Recall=Sensitiv ity ¼ TP
TP þ FN

ð10Þ

Specificity ¼ TN
TN þ FP

ð11Þ

Precision=Confidence ¼ TP
TP þ FP

ð12Þ

F1� score ¼ 2:P:R
P þ R

ð13Þ

AUC ¼ TPR� TNR
2

ð14Þ

In Equations (9)–(14):
TP (True Positive): Number of samples when the predicted

value and the real value are positive.
TN (True Negative): Number of samples when the predicted

value and the real value are negative.
FP (False Positive): Number of samples when the predicted

value is positive, and the real value is negative.
FN (False Negative): Number of samples when the predicted

value is negative, and the real value is positive.
P: Precision/ Confidence
R: Recall/ Sensitivity
TPR (True Positive Rate): Sensitivity.
TNR (True Negative Rate): Specificity.
The ROC curve is used to evaluate the equilibrium between

accuracy and sensitivity. The area remaining below the ROC curve,
Table 8
Confusion Matrix for ROC analysis.

Real

Positive Negative

Predicted Posıtıve TP (True Positive) FP (False Positive)
Negative FN (False Negative) TN (True Negative)



T. Karagül Yıldız, Nilüfer Yurtay and Birgül Öneç Engineering Science and Technology, an International Journal 24 (2021) 50–70
known as the area under the curve (AUC), is defined as the ROC
score. The ROC curve is plotted depending on the changing classi-
fication threshold values of true positives as a function of false pos-
itives. A ROC score of ‘‘100 signifies that the positives are separated
from the negatives in an excellent way. A ROC score of ‘‘0” means
that no positives are found [61]. ROC analysis is widely used for
binary-classed problems, yet it is also suitable for multi-class prob-
lems. A two-class approximation is used for multi-class problems.
One of these approaches is the ‘‘one-versus-one” and the other is
the ‘‘one-versus-all”. In the ‘‘one-vs-one” approach, each class is
compared pairwise to each of the others. In the ‘‘one-vs-all”
approach, for class ‘‘t”, all other classes are marked as ‘‘not t” and
compared with ‘‘t”. [62] In the present study, multi-class ROC anal-
ysis is applied using the ‘‘one-vs-one” approach. The precision is
the rate at which the predicted positive class is actually positive.
The recall is the ratio of correctly predicted true positives. Because
these two metrics are also important performance metrics, the F1
score is also calculated using these two metrics [63]. The following
section gives the resulting confusion matrices and ROC curves for
all the methods used in this study (Figs. 10 –23).
Fig. 12. ROC curve of the linear SVM with CFS-7 dataset.
4. Results

In this study, four machine learning methods are tested with
original patient data to diagnose the 12 types of anemia seen in
Table 2 in the same way as an experienced medical consultant
would do. These are the most common types of anemia in Düzce
Province where the data were collected.

The performance metrics in Table 9 are obtained when the orig-
inal data are classified by the ANNs, various types of SVM, Naïve
Bayes, and decision tree models. For this study, boosted and
bagged decision tree models are used in addition to ANNs, linear,
quadratic, and cubic SVM models, and a Naïve Bayes model.

As seen in Table 9, the highest accuracy rate is achieved by the
boosted decision trees. In the AdaBoost method used in this study,
the weights of misclassified samples of the decision tree are
increased and the weights of correctly classified samples are
reduced at each iteration. In the subsequent iterations, the updated
weights are used. Thus, at each iteration, the algorithm is concen-
trated on misclassified cases. The ROC curves and confusion matri-
ces of the most successful methods obtained with all datasets are
shown in Figs. 11-24.
Fig. 11. Confusion matrix of the linear SVM with CFS-7 dataset.

Fig. 13. Confusion matrix of the quadratic SVM with CFS-7 dataset.
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Tables 10 – 19 show results when the methods are run on the
datasets obtained by the feature selection process performed using
the four different methods.

When the feature selection is completed in the dataset, it is
obvious that the success of almost all methods had increased. Anal-
ysis of the performance for the 7-featured CFS (Correlation-based
feature subset selection) dataset (Table 10) indicated that the suc-
cess of the boosted trees and neural networks had decreased
according to the original data. The most successful method is the
bagged trees.

Tables 11 – 13 show results when the methods are run on the
datasets obtained by the feature selection process performed using
the information gain method.

Analysis of the performance for the 3-featured information gain
dataset (Table 11) indicated that the success had decreased com-
pared to the 7-featured CFS dataset (Table 10). However, more



Fig. 14. ROC curve of the quadratic SVM with CFS-7 dataset.

Fig. 15. Confusion matrix of the Cubic SVM with Info. Gain-5 dataset.

Fig. 16. ROC curve of the cubic SVM with info. gain-5 dataset.

Fig. 17. Confusion matrix of the boosted tree with PCA-16 dataset.
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successful results are obtained than with the original dataset.
Although there is a decline in the success of the ANN and decision
tree-based methods, the success of the Naïve Bayes and SVMmeth-
ods increased.

Analysis of the performance for the 5-featured information gain
dataset (Table 12) showed that the success had increased com-
pared to the previous 3-featured information gain dataset
(Table 11). This increase is noticeable for all methods. Although
the attributes in the 3-featured dataset are the highest information
gain attributes, using only these attributes did not increase the
success of the methods.

Analysis of the performance table for the 13-featured infor-
mation gain dataset (Table 13) demonstrated that the success
is slightly lower than with the previous datasets. In the bagged
and boosted decision tree methods, the increase in success
stands out. With the increase in the number of features, a slight
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decrease is observed in the success of the SVM and Naïve Bayes
methods.

Tables 14–16 show results when the methods are run on the
datasets obtained by the feature selection process performed using
the information gain ratio method.

Analysis of the performance for the information gain ratio-7
dataset indicated that the success is close to that of the previous
datasets.

Analysis of the performance for the information gain ratio-11
dataset revealed no remarkable difference in the success of the
methods compared with their success in the previous datasets.

Analysis of the performance for the information gain ratio-16
dataset again indicated that no remarkable increase had occurred
in the success rate of the methods. However, in general, the
decrease in the number of features led to a decline in the success
rate of the ANN and DT-based methods as well.



Fig. 18. ROC curve of the boosted tree with PCA-16 dataset.

Fig. 19. Confusion matrix of the bagged tree with CFS-7 dataset.

Fig. 20. ROC curve of the bagged tree with CFS-7 dataset.

Fig. 21. Confusion matrix of the naïve Bayes with CFS-7 dataset.
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Analysis of the performance table for the PCA-16 dataset
(Table 17) showed a success rate similar to the previous datasets.
The results obtained with this 16-featured dataset are more suc-
cessful than the results obtained with the original 25-featured
dataset.

Tables 18 and 19 present the datasets and models that yielded
the most successful performance. Linear and Quadratic SVM,
Bagged Tree, and Naïve Bayes methods demonstrated the highest
success with the CFS-7 dataset. Cubic SVM showed the most suc-
cess with the information gain-5 dataset. The Boosted Tree exhib-
ited the most success with the PCA-16 dataset. The ANN method is
the most successful with the original dataset, which is a notable
finding.

The confusion matrices and ROC curves of the most successful
methods used in the present study are shown in Figs. 11 - 24.
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Figs. 11 and 12 show the most successful results of the linear
SVM methods confusion matrix, and the ROC curve obtained with
the CFS-7 dataset.

As seen in Figs. 11 and 12, linear SVM predicted the anemia
types at a 76.1% accuracy rate. The highest success rate is achieved
in the diagnosis of iron deficiency anemia (96.1%), and the lowest
in the diagnosis of hemolytic anemia (21.4%).

Figs. 13 and 14 show the most successful results of the quadra-
tic SVM methods confusion matrix, and the ROC curve, obtained
with the CFS-7 dataset.

As seen in Figs. 13 and 14, quadratic SVM predicted anemia
types at an accuracy rate of 75.8%. The highest success rate is
in the diagnosis of patients with iron deficiency anemia
(94.1%), whereas the lowest is in the diagnosis of hemolytic ane-
mia (42.8%).



Fig. 22. ROC curve of the Naïve Bayes with CFS-7 dataset.

Fig. 23. Confusion matrix of the neural network with the original dataset.

Table 9
Performance of models for the original dataset including 25 features.

Method Accuracy

Original Dataset (25 attributes) Linear SVM 68.1
Quadratic SVM 69.3
Cubic SVM 64.3
Boosted Trees 83.2
Bagged Trees 80.6
Naïve Bayes 59.8
ANN 79.6
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Figs. 15 and 16 show the most successful results of the cubic
SVM methods confusion matrix, and the ROC curve, obtained with
the InfoGain-5 dataset.

Figs. 15 and 16 show that cubic SVM predicted anemia types at
a rate of 72% accuracy. The highest diagnosis success rate is
achieved in patients with iron deficiency anemia (88.9%), while
the lowest is in the diagnosis of thalassemia trait (carrier) patients
(4.3%).

Analysis of the results showed that the highest prediction suc-
cess rate using the SVMmethods is obtained when the kernel func-
tion is selected as linear (76.1%). When the kernel function is
selected as quadratic, the success rate (75.8%) is similar to the lin-
ear rate; however, the lowest prediction success rate is obtained
when the kernel function is selected as cubic (72%). The disease
classified at the highest rate using SVM models is iron deficiency
anemia, whereas those classified at the lowest rate are hemolytic
anemia and thalassemia trait.

Figs. 17 and 18 show the most successful results of the boosted
decision tree methods confusion matrix, and the ROC curve,
obtained with the PCA-16 dataset.

As seen in Figs. 17 and 18, the boosted decision tree predicted
anemia types at an 83.0% accuracy rate. The highest success rate
(97.4%) is achieved in the diagnosis of patients with iron deficiency
anemia. The lowest success rate is seen in the diagnosis of hemo-
lytic anemia (0%). This may be attrıbuted to the number of sam-
AUC Precision Recall F1-score error

0.97 70.1 77.7 0.737 31.93
0.97 73.9 75.1 0.748 30.72
0.96 72.8 70.5 0.716 35.71
0.98 96.7 78.1 0.864 16.77
0.98 92.9 79.2 0.855 19.42
0.88 76.6 52.8 0.625 40.22
– 78.2 79.9 0.790 20.4

Fig. 24. ROC curve of the neural network with the original dataset.



Table 10
Performance of models for the 7-featured CFS dataset.

Method Accuracy AUC Precision Recall F1-score error

CFS Dataset(7 attributes) Linear SVM 76.1 0.98 83.2 82.7 0.829 23.93
Quadratic SVM 75.8 0.96 82.1 79.9 0.809 24.23
Cubic SVM 71.8 0.95 78.3 74.6 0.764 28.20
Boosted Trees 81.9 0.98 96.7 77.7 0.861 18.09
Bagged Trees 85.6 0.98 90.8 82.3 0.863 14.37
Naïve Bayes 74 0.93 81.5 66.7 0.733 26.03
ANN 76.4 – 74.5 85.9 0.798 23.6
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ples. This disease and thalassemia trait are among the lowest num-
ber of samples in the dataset

Figs. 19 and 20 show the most successful results of the bagged
decision tree methods confusion matrix, and the ROC curve,
obtained with the CFS-7 dataset.

As seen in Figs. 19 and 20, the bagged decision tree predicted
anemia types at an 85.6% accuracy rate. The highest success rate
is achieved in the diagnosis of iron deficiency anemia (97.7%),
whereas the lowest is 35.7% for hemolytic anemia. The reason
Table 11
Performance of models for the 3-featured info-gain dataset.

Method Accuracy

Info. Gain Dataset(3 attributes) Linear SVM 71.1
Quadratic SVM 71.1
Cubic SVM 66.9
Boosted Trees 71.6
Bagged Trees 71.6
Naïve Bayes 66.5
ANN 63.8

Table 12
Performance of models for the 5-featured info-gain dataset.

Method Accuracy

Info. Gain Dataset(5 attributes) Linear SVM 75.5
Quadratic SVM 74.6
Cubic SVM 72
Boosted Trees 79.9
Bagged Trees 81.2
Naïve Bayes 70.7
ANN 72.9

Table 13
Performance of models for the 13-featured info-gain dataset.

Method Accuracy

Info. Gain Dataset(13 attributes) Linear SVM 72.5
Quadratic SVM 73.6
Cubic SVM 68.7
Boosted Trees 82.2
Bagged Trees 83.8
Naïve Bayes 65.1
ANN 71.1

Table 14
Performance of models for the 7-featured info-gain-ratio dataset.

Method Accuracy

Info. Gain Ratio Dataset (7 attributes) Linear SVM 72.1
Quadratic SVM 71.3
Cubic SVM 67.6
Boosted Trees 77.6
Bagged Trees 78.7
Naïve Bayes 65.8
ANN 65.1
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for this may have been, as mentioned above, the number of
samples.

Figs. 21 and 22 show the most successful results of the Naïve
Bayes methods confusion matrix, and the ROC curve, obtained with
the CFS-7 dataset.

Figs. 21 and 22 show that Naïve Bayes predicted anemia types
at an accuracy rate of 74%. The highest success rate is obtained
in the diagnosis of folate deficiency anemia (87.6%), while the low-
est is in the diagnosis of hemolytic anemia (26.1%).
AUC Precision Recall F1-score Error

0.9 88.6 37.1 0.523 28.86
0.89 88.6 38.6 0.537 28.92
0.86 22.3 34.7 0.271 33.07
0.9 83.7 36.4 0.507 28.44
0.88 64.7 37.8 0.477 28.38
0.75 49.5 39.2 0.437 33.49
– 36.5 67.9 0.475 36.2

AUC Precision Recall F1-score Error

0.98 86.4 78.7 0.823 24.53
0.97 83.7 80.2 0.819 25.37
0.97 81.5 78.5 0.799 27.96
0.98 96.7 78.4 0.865 20.14
0.97 90.2 83.4 0.866 18.82
0.94 81.5 68.5 0.744 29.34
– 78.6 82.1 0.803 27.1

AUC Precision Recall F1-score Error

0.98 76.6 80.6 0.785 27.48
0.97 82.1 80.3 0.812 26.39
0.96 78.8 71.8 0.751 31.26
0.98 97.3 78.2 0.867 17.79
0.98 91.8 80.5 0.857 16.23
0.91 79.3 58.9 0.675 34.87
– 78.5 69.6 0.738 28.9

AUC Precision Recall F1-score Error

0.94 72.3 60.7 0.659 27.90
0.91 66.3 55.7 0.605 28.74
0.88 59.2 53.4 0.561 32.35
0.94 78.3 64.6 0.707 22.36
0.95 71.2 61.5 0.659 21.34
0.81 54.3 46.3 0.499 34.21
– 48.1 28.3 0.356 34.9



Table 15
Performance of models for the 11-featured info-gain-ratio dataset.

Method Accuracy AUC Precision Recall F1-score Error

Info. Gain Ratio Dataset
(11 attributes)

Linear SVM 74 0.98 75.5 79 0.772 26.03
Quadratic SVM 72.5 0.96 76.1 76.5 0.762 27.54
Cubic SVM 67.6 0.95 73.4 69.2 0.712 32.41
Boosted Trees 80 0.97 91.3 68.9 0.785 20.02
Bagged Trees 80.8 0.97 83.7 74.4 0.787 19.24
Naïve Bayes 65.1 0.87 66.3 58.4 0.620 34.87
ANN 76.2 – 71.4 85.3 0.777 23.8

Table 16
Performance of models for the 16-featured info-gain-ratio dataset.

Method Accuracy AUC Precision Recall F1-score Error

Info. Gain Ratio Dataset (16 attributes) Linear SVM 71 0.98 75 80.2 0.775 29.04
Quadratic SVM 70 0.97 79.3 78.5 0.788 30.01
Cubic SVM 65.1 0.96 73.4 70.3 0.718 34.87
Boosted Trees 82 0.98 96.7 78.1 0.864 18.03
Bagged Trees 84.2 0.98 94 79.4 0.860 15.75
Naïve Bayes 61.4 0.88 72.3 53.8 0.616 38.60
ANN 74.7 – 74 77.2 0.756 25.3

Table 17
Performance of models for the 16-featured PCA dataset.

Method Accuracy AUC Precision Recall F1-score Error

PCA Dataset(16 attributes) Linear SVM 71.1 0.97 76.6 80.6 0.785 28.86
Quadratic SVM 70.8 0.97 76.1 76.9 0.764 29.22
Cubic SVM 66.3 0.96 76.6 73.8 0.751 33.67
Boosted Trees 83 0.98 96.7 79.5 0.872 17.01
Bagged Trees 85.4 0.98 91.3 81.6 0.861 14.61
Naïve Bayes 59 0.9 80.4 54.8 0.651 41.01
ANN 76.7 – 78.3 84.2 0.811 23.3

Table 18
Performance of datasets according to models.

Method Dataset Accuracy

Linear SVM CFS -7 76.1%
Quadratic SVM CFS -7 75.8%
Cubic SVM Info. Gain -5 72.0%
Boosted Trees PCA -16 83.0%
Bagged Trees CFS -7 85.6%
Naïve Bayes CFS -7 74.0%
ANN Original -25 79.6%
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Figs. 23 and 24 show the most successful results of the ANN
methods confusion matrix, and the ROC curve, obtained with the
original dataset.

Figs. 23 and 24 show that the ANN predicted anemia types at a
79.6% accuracy rate. The highest success rate is obtained in the
diagnosis of iron deficiency anemia (86.4%), and the lowest in the
diagnosis of hemolytic anemia (64.0%). Due to the structure of
Table 19
Performance of models according to datasets.

Dataset SVM Accuracy Ensemble Trees

Original �25 Quadratic 69.3% Boosted
CFS �7 Linear 76.1% Bagged
Info. Gain �3 Linear/Quadratic 71.1% Boosted/Bagged
Info. Gain �5 Linear 75.5% Bagged
Info. Gain �13 Quadratic 73.6% Bagged
Info. Gain Ratio �7 Linear 72.1% Bagged
Info. Gain Ratio �11 Linear 74.0% Bagged
Info. Gain Ratio �16 Linear 71.0% Bagged
PCA �16 Linear 71.1% Bagged

67
the ANNs, it is significant that the success rate increased in the
diagnosis of iron deficiency anemia, with the highest number of
samples, while it decreased in the diagnosis of hemolytic anemia,
one of the diseases with the fewest number of samples.

According to these results for the present study, the ANN and
ensemble decision tree methods produced more meaningful
results than the Naïve Bayes and SVM methods, and the distribu-
tion of the prediction rates of each class is more balanced. The
results also show that the most successfully classified diseases
are iron deficiency anemia and folate deficiency anemia and those
classified at the lowest success rate are hemolytic anemia and tha-
lassemia trait. One of the reasons for this may have been the num-
bers of samples. The class with the largest number of samples in
the dataset is iron deficiency anemia with 351 samples, followed
by 234 samples for the folate deficiency anemia class. The class
with the fewest number of samples is thalassemia trait, with only
23 samples, followed by 42 samples in the dataset for hemolytic
anemia.
Accuracy Naïve Bayes Accuracy Neural Network Accuracy

83.2% 59.8% 79.6%
85.6% 74.0% 76.4%
71.6% 66.5% 63.8%
81.2% 70.7% 72.9%
83.8% 65.1% 71.1%
78.7% 65.8% 65.1%
80.8% 65.1% 76.2%
84.2% 61.4% 74.7%
85.4% 59.0% 76.7%
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When all the results are analyzed, they indicated that the deci-
sion tree-based ensemble methods had produced more successful
results with these data than the ANN, naïve Bayes, or SVM meth-
ods, and that the estimation rates are distributed more evenly. Per-
forming feature selection in the dataset is an important factor that
increased success. Another notable point in these findings is that
the most successful result in the ANN method was obtained using
the original dataset. In the future, we are planning to conduct new
studies on this subject.
5. Discussion

In this study, 12 different types of anemia described in theWHO
International Classification of Disease (ICD) Codes are diagnosed. In
addition, the study included 25 different attributes used by an
experienced medical specialist to diagnose the anemias. The data
used in this study are completely original and included age, sex,
chronic diseases and symptoms as well as blood parameters.
New datasets are also created using known feature selection meth-
ods such as Information gain, information gain ratio, PCA, and CFS.
Valuable results are obtained in the experiments using these
datasets.

The methods and results of the studies mentioned in related
works are examined and a novel study is conducted for the new
dataset. Although the studies reviewed may have overlapping pro-
files, the objective is not to make a performance comparison since
the data are not used with the same approach. In the present study,
all the data used are taken from the files of diseased individuals.
Therefore, as no data are taken from healthy individuals, the term
‘‘non-anemic” is considered suitable for patients having other
blood disorders that did not belong to one of the anemia types.
When the study is expanded, other hematological disorders may
be included in the estimation of diseases other than anemia. In
order to treat a patient, first, it is necessary to determine the dis-
ease. Various methods have been developed to help experts in
making this diagnosis. In the present study, four of the most famil-
iar artificial learning methods (artificial neural networks, Support
Vector Machines, naïve Bayes, and decision trees) are applied to
a completely original dataset and the results are discussed.

In this study, the Ethics Committee permission is required to
use real patient data. In order to obtain the approval of the Ethics
Committee, every detail had to be determined. Therefore, all the
attributes of the data had to be declared to the Committee. As there
is no need for any pre-processing other than digitizing some data,
no intervention is required. Because there is no provision for
changing the content and quality of the data, in this study, a com-
pletely original dataset is used in which no numerical intervention
had been made. Moreover, the use of real patient data made the
relevance of this study significant. After obtaining the dataset, at
the next stage, the data are classified using various common meth-
ods found in the literature that had been successful and had
yielded significant results. During classification, we used the 10-
fold cross-validation method, in which the dataset is divided into
10 different subsets. When one group is a testing set, the remaining
nine groups served in turn as a training set. In this way, all the
combinations are tested so that each of the 10 subsets had been
a testing set once, and a performance value is found by taking
the average of each result. The ROC analysis, precision, recall, F-
score, AUC, and error metrics are used to evaluate performance.
The outcome of the study also provided decision-making support,
helping doctors and medical students in the diagnosis of 12 differ-
ent types of anemia. The limitation of this study is that the entire
dataset consisted of data from individuals with hematological dis-
eases. For this reason, the data referred to as ‘‘non-anemic” are
based on individuals with other diseases. At the same time, anemia
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is also a symptom that can accompany other diseases. Despite this
limitation, it is obvious that the classifier performances we
obtained are acceptable. We believe that this study makes a posi-
tive contribution to the literature.

6. Conclusion

Anemia is a very common disease affecting the quality of life
and with the appropriate treatment, the standard of living of the
patient will improve. It is obvious that the first step in the treat-
ment is the correct diagnosis. In this study, the 12 types of anemia
most commonly encountered in Düzce Province are classified by
four different machine learning methods: ANNs, SVMs, naïve
Bayes, and ensemble decision trees. The method with the highest
success rate is the bagged decision tree method. Feature selection
is performed using information gain, information gain ratio, princi-
pal component analysis (PCA), and correlation-based feature sub-
set selection (CFS) methods. As a result of the feature selection
process, nine different datasets are obtained. Thus, our dataset,
which initially consisted of 25 attributes, is expanded to different
datasets of 16, 13, 11, 7, 5, and 3 attributes. Here, our aim is to
reach the doctor’s decisions with the data used by the doctor.
Therefore, the original dataset is included in the datasets as well.
All methods are also run on the new datasets and we compared
the results of them all. The evaluation is carried out according to
the accuracy, confusion matrix, ROC curves, classification error,
precision, recall, and F-score metrics.

Finally, in order to improve the success rate, future studies
should focus on combining different methods and on developing
new hybrid methods. Moreover, by expanding the dataset, hema-
tological diseases other than anemia could also be included in
these studies.
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