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ABSTRACT Estimations of the solar potential from the building design files may affect placement
considerations in favor of more sunlight reception that reduces the energy costs and saves the environment.
In this study, a GPU based system (GPU-DSRM) is proposed to estimate direct and diffuse solar radiation
aggregated on 3D structures at urban or individual scale. In the proposed approach, finite element method,
back-face detection and ray-tracing algorithms are customized to run in parallel to reduce the execution time.
Thus, real-time shadow analysis with adjustable sampling rate and time scale can be performed without
compromising precision and accuracy of the estimations. The most important novel aspect of the study is
that it can be used anywhere in the world without the need for meteorological data. Some of the test results
obtained from a site with 10 buildings are presented in this paper that shows a speedup value of 45 with
the new GPU-based implementation compared to the CPU-based model. The GPU-DSRM tool has also
been compared with geometric tools in the literature. Solar energy potential analysis of building designs or
existing urban formations can be completed faster and more precisely with this new approach.

INDEX TERMS Solar potential analysis, GPU, 3D City Model.

NOMENCLATURE
α Hourly elevation angle
β Slope
δ Declination angle
ω Hour angle
θ The angle between the normal of the sloped surface

and the direction of the sun. The angle of the sun to
the surface

ε Elevation angle constant
ϕ Latitude angle
Hb Direct solar radiation on a horizontal surface
Hd Diffuse solar radiation on a horizontal surface
Htd Diffuse solar radiation on a sloped surface
S Daily duration of daylight
θz The zenith angle of the sun
H0 Extraterrestrial irradiation
H Global solar radiation value for horizontal surfaces
Kt H

H0
, clearness index

Rd Conversion factor of diffuse radiation
S0 Maximum duration of daylight possible
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I. INTRODUCTION
One of the most important indicators of development is the
state of cities. Hence, the provision of quality housing and
the formation of sustainable cities are necessary in order to
improve living standards. The design of long-lasting, resilient
housing against future global climate changes and the abil-
ity to work together with climate play central roles in the
formation of sustainable cities. Many parameters should be
analyzed in detail for a qualified housing design such as
selection of land, location of the building facades, building
geometry, lighting etc. Consideration of these parameters
during the design phase will enable to achieve better perfor-
mance from the active systems installed homes. Aside from
this, retrofitting changes which is made to sustain an existing
building or cities change the physical, social structure and
solar potential of the building [1].

Solar energy is one of the renewable sources where active
and passive systems are widely used to utilize in a sustainable
city. The installation of buildings that optimally exploit solar
energy potential provides the power to meet both thermal
and electrical energy requirements [2]. In order to increase
the utilization of solar energy in houses and cities, radia-
tion analysis on 3D structures should be done in the most
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accurate way to obtain better planning of energy resources
and energy distribution systems [3]–[5]. The accuracy of the
analysis depends on the holistic analysis of the 3D structures
in complex urban environments and the effectiveness of the
model.

There are many studies in the literature to estimate solar
potential of buildings. As a result of these studies, two types
of solar potential calculation software tool have been devel-
oped: rendering and geometric. Rendering tools are diffi-
cult to use and less preferable for general solar potential
analysis since they require meteorological data and detailed
material information of the structures. DIVA-for-Rhino and
Honeybee/Ladybug are examples of rendering tools. On the
other hand, geometric tools are less complex to use because
they only use geometric relationships between the sun and
the sky. Geometric tools consider only direct reflection, and
usually don’t rely on climate data and building material prop-
erties. ArcGIS and GRASS GIS are examples of geometric
tools.

When geometric tools are examined, it is seen that there
are few studies that perform radiation analysis of buildings
in the design stage, consider the shadow effect [6], [7].
However, only the roofs of the buildings were focused and
their facades were not taken into consideration in solar
estimations. In these pixel-based studies, roof shadows are
obtained by using the shading maps which is taken only a
few times in a day. Hence, a dynamic shadow analysis is not
possible in the pixel based systems.

Solar potential estimation becomes an iterative process
when optimal position and facade forms are searched for a
building. This may require many trials to obtain the best home
design parameters, and when the problem becomes urban
size, radiation analysis may take weeks to get the results [8].
Hence, high performance computers and appropriate algo-
rithms are needed to obtain the results in shorter time.

Based on these shortcomings, a geometric based solar
potential analysis tool development study was carried out in
accordance with the following objectives: 1) The tool must
be able to analyze solar potential for any part of the world
(no meteorological data is needed), 2) it must take into
account all building surfaces either in design phase or com-
pleted, 3) it must do dynamic shading analysis, 4) it must
produce high precision and accurate results (by dividing sur-
faces into smaller pieces and dynamic sampling), 5) it must
complete the analysis in a reasonable time.

During the study, it was understood that the conventional
methods are not be suitable for this task; hence, a new
Graphical Processing Unit (GPU) based high-performance
parallel algorithm has been developed. Solar analysis can be
carried out at any location in the world within a reasonable
time using this new approach, including shadow analysis
with roofs and facades using 3D building plans provided in
CityGML format. The tool developed in this study is targeting
urban planners, architects, civil engineers, energy investors
and even individuals.

II. RELATED WORK
In literature, many models have been developed for solar
radiation analysis, some of which are linear and the others
nonlinear mathematical models, there are also artificial intel-
ligence techniques and hybrid models [9], [10]. Solar geom-
etry information (solar incidence angle, azimuth, latitude,
longitude and hour angle etc.), atmospheric conditions, phys-
ical properties of the area to be analyzed (albedo value etc.)
play important roles in determining the amount of radiation
on horizontal and inclined surfaces.

Some models have been used for the radiation analysis
of 3D buildings in an urban environment but these models
alone are not sufficient. For example, shadows caused by
structures or other objects in the environment must be taken
into account. However, this require a detailed 3D informa-
tion about the area and/or structure to obtain more accurate
results. The detailed information is usually obtained using air-
borne and satellite images, Airborne Laser Scanning (ALS),
Terrestrial Laser Scanning (TLS) techniques or Light Detec-
tion and Ranging (LIDAR) systems [11]–[13]. These tech-
nologies are used in many studies, such as analysis of solar
radiation of building roofs in urban areas [14], [15], estima-
tion of PV potential of solar radiation on roofs [16]–[18],
determination of optimum position of PV panels on roof [19],
evaluating solar radiation over facades [20], [21], and analysis
of solar energy potential of buildings [22]–[24].

These technologies are costly and not suitable for newly
designed buildings or living areas. Hence, a pixel-based
approach is proposed to estimate solar potential on flat
roofs which doesn’t rely on technologies such as LiDAR,
ALS, MLS [6]. In this study, buildings with flat roofs in a
newly planned construction area are chosen as a case study.
In another study, researchers are focused on estimating the
solar potential of pitched roofs based on the pretext archi-
tectural design drawings which use a pixel based approach
without technologies such as LIDAR, ALS, MLS [7]. A typi-
cal Australian house with nine roofs is chosen for case study.
In this study, shadows are also considered by using shading
maps.

Shadows have large impact on solar potential, therefore
shading analysis should be done continuously for high accu-
racy estimates. A dynamic solar radiation model (DSRM) is
presented at another work to evaluate the solar potential on
3D structures (facades, roofs) which can be either in planning
stage or completed at the urban or individual scale [25].
A real-time shadow analysis in the desired sensitivity and
time scale can be achieved using the proposed approach
where the analysis takes approximately 11 hours. To reduce
the response time, a new geometric method has been devel-
oped by another group to estimate the solar radiation of
buildings using rooftop by 3D models [26].

The response time becomes an important factor when large
scale solar radiation applications are considered including
the dynamic shading analysis. High performance computer
clusters and software techniques such as parallel computing
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environments or specialized hardware devices are preferred
for solar potential analysis or weather forecasting [27], [28].
Although cluster computing provides more flexible comput-
ing environment, multi-core systems are more preferred in
existing studies due to their ease of programming and better
price-performance ratio within smaller size [29].

Use of Graphical Processing Unit (GPU) architecture to
meet high performance computing demand has been a fre-
quently used approach in last decade. GPU architecture
implements the Single Instruction Multiple Data (SIMD)
model with a large number of cores [30]. The scientific
community takes advantage of this technology to accelerate
their applications by performing concurrent computation on
GPU cores. This is usually referred as General Purpose Com-
putation on GPU (GPGPU). Parallelization of serial code
is a tedious task; however, it becomes more complex when
GPU is considered due to its unique architecture [31]. If an
algorithm was originally coded for a traditional computer,
then the best is to redesign the algorithm for a target GPU
architecture, then code it from scratch to obtain well perform-
ing concurrent execution.

Compute Unified Device Algorithm (CUDA) is a parallel
computing platform and software programming model devel-
oped by NVIDIA to utilize GPU architecture for high perfor-
mance problems. With the support of CUDA programming
model, NVIDIA becomes dominant GPU architecture for
many applications as well as geographic information systems
applications [32].

A software developer with basic parallel programming
knowledge and high-level programming skills can develop
applications using with the NVIDIA-CUDA programming
platform. In this study, CUDA programming model is pre-
ferred because it is more mature and has extensive docu-
mental support that allow coding in high-level languages.
In order to benefit from the capabilities of the GPU archi-
tecture, applications running on the CPU can be moved onto
the GPU; however, the correctness and performance analysis
of the work must carefully be carried out.

Many high performance methods have been developed for
faster solar radiation applications. Parallelization are themost
preferred approach in order to meet high performance needs.
There are many studies that benefit from the GPU-based
parallelism in order to meet the objectives such as faster
filtering of data used in solar radiation analysis studies
[33]–[36], reducing the response time of the solar radiation
analysis application [29], [37]–[39] and existing radiation
analysis tools [40]. GPU method that can perform solar
potential analysis of 3D building(s) which can either be in
design stage or completed hasn’t been encountered in the
literature. The developed method uses 3D input files of the
target building(s) at any scale. The better response time of
the application allows examining alternative building designs
and placement layouts within shorter time in solar poten-
tial perspective. The proposed method is described in detail
in section IV.

III. PARALLELISM FOR PERFORMANCE AND
CUDA ARCHITECTURE
Multi-core CPU architectures implement limited amount of
parallelism via multi-threaded programming model and they
are still far away to meet the increasing demand for high
performance. The successive execution of the commands
makes the performance of the CPUs inadequate for high
computational requirements. Parallelism is a solution for this
demand and can be achieved with several hardware models:
distributed memory, shared memory or hybrid models.

In distributed memory model, a parallel system can be
organized by connecting many computers using high speed
network infrastructure, and parallelism can be obtained in the
task level granularity. Distributed nature of the system causes
significant communication and synchronization overheads
while passing data between processes at separate computers.
This type of systems is scalable, flexible; but they are hard to
program.

There are several shared memory parallel architecture
approaches in use. One of them is very well knownmulti-core
CPU system. The other approach is to use multiple separate
CPUs on the same board that share the main memory. This
type of computers is usually implemented as workstation or
server systems. Multiple-CPU systems are expensive, have
fixed structure in nature and do not scale well with the prob-
lem size. However, they are comparatively easy to program,
because compiler does all the tedious complex part of the task
distribution between CPUs.

FIGURE 1. General purpose CPU-GPU architecture for high performance
computing.

Like other systems, GPU architecture also implements a
shared memory model with thousands of processing elements
(GPU cores) connected to a unified memory. However, GPU
computing differs from above parallel approaches because
it comes as an attachment to a main system (see Figure 1).
Moreover, the programmer must know internal details of the
interested GPU architecture to develop application. Inter-
estingly, GPU architecture allows data level parallelism
which makes it superior for some applications [41]. As a
solution to high performance requirements, GPU-supported
high-performance computing systems are widely preferred
because of their ease of use and price-performance advantage.

45434 VOLUME 8, 2020



S. Kaynak et al.: GPU-Based Dynamic Solar Potential Estimation Tool Using 3D Plans

Multiple GPU boards can be installed into one case, and
multiple GPU servers can be interconnected via a high speed
network to form a hybrid parallel system.

NVIDIA created a model called Compute Unified Device
Architecture (CUDA) to enable graphic cards to be used
for high performance calculations [42]. CUDA allows code
developers to program NVIDIA brand graphic cards in ordi-
nary computers for their high performanceworkloads. CUDA
architecture has a hierarchical layout in each device: grids,
blocks and threads. A programmer can address the concurrent
executions (threads) by using 3D arrays. CUDA source code
running on the CPU is called ‘‘host code’’, and the code
running on GPU is called the ‘‘device code’’. The functions
required to run on the GPU are called ‘‘kernel functions’’.
During the run, a new grid is created logically for each kernel
call and the kernel function is divided into thread blocks [43].
The number of blocks and threads varies depending on the
application, the most appropriate thread and block counts are
obtained from the experiences. All blocks of the GPU must
be in use for optimum performance.

IV. GPU-BASED SOLAR POTENTIAL ESTIMATION
In this study, a software tool that implements real-time shad-
ing analysis with GPU accelerated DSRM model have been
developed to estimate solar energy potential more quickly and
precisely. Detailed information on the dynamic solar radia-
tion model is given in section IV-A. Section IV-B describes
GPU based DSRM model in detail.

A. RESEARCH METHODOLOGY
Dynamic global solar radiation model has been developed
to predict solar radiation potential of 3D structures at the
individual/urban scale (see Figure 2). The model takes 3D
plans and sun information such as altitude, azimuth, hour
angles of the sun as input. The sun information such as
declination and zenith angles are calculated using the equa-
tions introduced in a book by Duffie and Beckman [44]. The
back-face detection algorithm is used to detect sun-facing
surfaces. In the algorithm, all surfaces of interested buildings
are divided into small triangles at the desired scale by using
the finite element method. Each triangle on the front surface
is subjected to ray-triangle-intersection test with the others,
and this test determines the triangles that the sunlight directly
reach. For the shadow-less triangles, global radiation amount
equals the sum of direct and diffuse radiation. For shaded
areas, the global solar radiation amount is taken as only the
diffusion radiation value.

In this study, Angstrom–Prescot model is used to
obtain the global solar radiation amount on horizontal
surfaces [45], [46].

H
H0
= a+ b ∗

(
S
So

)
(1)

The coefficients a and b in Equation 1 are called Angstrom
coefficients. The coefficient values a = 0.25, b = 0.50
proposed in [47] are used. The performance of the Angstrom-

FIGURE 2. Basic steps of the DSRM model.

Prescot model with these suggested coefficient values has
been evaluated for Kastamonu, Sakarya, Adıyaman, Afyon,
Diyarbakır and İzmir. The model outputs are compared with
global solar radiation data measured by the ‘‘General Direc-
torate of Renewable Energy/Turkey’’ (http://www.eie.gov.tr).
The model was tested for the cities mentioned in the previous
work and verified that it produces acceptable results [25].

The direct radiation value on the horizontal surface is cal-
culated on the basis of Elevation Angle Constant
(EAC) method recommended by [48]. The general formulas
of the EAC method are given in Equation 2 and Equation 3.

Hb = (H − Hd ) /ε (2)

ε =


∑sunrise

sunset sinα
12

for (S0 ≤ 12)∑sunrise
sunset sinα
day length

for (S0 > 12)
(3)

The diffuse radiation value on the horizontal surface is
calculated on the basis of quadratic model recommended
by [49]. The general formulas of the quadratic method are
given in Equation 4.

Hd
H
= 0.9885− 1.4276Kt + 0.5679Kt2 (4)

The direct radiation value on a sloped surface depends on
the permeability of the atmosphere and the direct radiation
parameters on the horizontal surface. The permeability of the
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atmosphere can be calculated by Equation 5.

Rb = max(0,
cos θ
cos θZ

)

= max(0,
sin δ sin (ϕ − β)+ cos δ cos (ϕ − β)

sin δ sinϕ + cos δ cosϕ cosω
) (5)

The diffusion radiation value on a sloped surface is calcu-
lated on the basis of Liu-Jordan model [50]. The Liu-Jordan
model is obtained by multiplying the skewness of the oblique
surface by the visual field value (Rd) with the horizontal
surface diffusion radiation value:

Htd = Hd ∗ Rd (6)

In Liu-Jordan model, the Rd value is calculated using
Equation 7.

Rd =
(1+ cosβ)

2
(7)

B. GPU BASED DSRM MODEL
TheGPU-DSRMmodel has been developed tomake the solar
potential on 3D structures (facades, roofs) more precise and
faster which can be either in planning stage or completed at
the urban or individual scale. In some tools presented in the
literature, the users had to wait long periods of time (such
as 6 to 11 hours) to analyze solar potential of 3D plans
using defined scenarios [25], [26]. This waiting period is very
annoying for a user, and it deters the use of valuable solar
analysis tools to obtain the best passive design parameters that
provide optimum utilization of solar potential.

FIGURE 3. Flow diagram of GPU-DSRM algorithm.

GPU-DSRM tool uses the finite element method to divide
the building facades into triangles at the desired scale for
realization of the high precision analysis. The subject is
studied before; however, the conventional computers with
limited computation power cause long delays when the input
size scales up [25]. In this context, the use of GPU has been

Algorithm 1 CUDA Kernel Function for GPU-DSRM
Input : triangleList, sunInfoList
Output: diffuseRad, directRad, globalRad

1 tList ← triangleList
2 while time < sunInfoListLength do
3 sunNormal ← calcSunNormalize(azimuth, altitude)
4 for x ← threatIdx.x + blockDim.x ∗ blockIdx.x;

x < tListLength; x ← x + blockDim.x ∗ gridDim.x
do

5 triangleNormal ←
calcNormal(tList[x].v0, tList[x].v1, tList[x].v2)
seeSun← sunSee(sunNormal, triangleNormal)

6 if seeSun then
7 intersected ← false
8 midPoint ← tList[x].midPoint
9 for

y← threatIdx.y+ blockDim.y ∗ blockIdx.y;
y < tListLength;
y← y+ blockDim.y ∗ gridDim.y do

10 if !intersected then
11 intersected ← testIntersection(

midPoint, sunNormal, tList[y])
12 end
13 end
14 diffuseRad[x]←

tList[x].diffuseList[time]+ diffuseRad
15 if intersected then
16 globalRad[x]←

globalRad[x]+ diffuseRad[x]
17 else
18 directRad[x]←

directRad[x]+ tList[x].directList[time]
19 globalRad[x]← globalRad[x]+

directRad[x]+ diffuseRad[x]
20 end
21 end
22 end
23 time← time+ 1
24 end

found as a solution to the problem, and the GPU-DSRM
algorithm has been developed to work on GPU architecture
(see Figure 3).

The parallel algorithm requires two parameters. The first
parameter is triangle array. These triangles are generated
from 3D plans of interested structures using finite element
method. The second parameter is sun information array.
The sun information is used to calculate solar radiation
amount of surface and to analyze whether a surface is
shaded.

The following operations are performed during the analysis
of each triangle:

• Using the back-face detection algorithm, it is determined
whether the triangle is exposed to the sun.
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• Using the ray tracing algorithm, it is determined whether
the sunlit triangles are in the shadow of another triangle.

• If the triangle is exposed to direct sunlight, direct and
diffusion solar radiation is calculated for the global solar
radiation calculation.

• If the triangle is not exposed to direct sunlight, the
diffusion solar radiation is calculated for the global solar
radiation calculation.

The pseudo code of algorithm can be seen in Algorithm 1.
The serial version of the algorithm was coded using Visual

Studio platform in C-Sharp programming language, aimed
to run on classical multi-core CPU computers. When par-
allelization study has started, the language and platform
became problem since the CUDA architecture do not support
C-Sharp language. While searching a solution, a research
study called Hybridizer by Altimesh was came across that
develops converter tools for Visual Studio applications, and
the research group was contacted for collaboration [51].
Hybridizer provides tools and libraries to generate source
code or binaries from C-Sharp applications optimized for
multi-core CPUs and GPUs. As a result, Hybridizer libraries
are used while transferring some parts of our previous code to
C++ that will run on GPU. The recommendations obtained
from similar work are followed carefully while porting the
application into GPU platform [27], [52].

When algorithm is parallelized, both correctness and per-
formance tests must be performed to get the same output
in less time with high utilization. Especially profiling tools
become more critical since they show idling parts of the
parallel run, and allows fine-tuning in the code. For this
reason, the testing and optimization processes of parallel code
are quite complex from those of serial programming.

FIGURE 4. Parallel program activities and synchronization barriers.

At the left hand side of Figure 4, the input data are trans-
ferred from the host to the device, and this data is used
throughout the time periods to be analyzed. The input data
formed at the CPU side for each of the requested sampling
time zones that affect the sensitivity of the analysis. Based on
the data transferred, operations are performed on the GPU
for the first sampling time interval, and immediately after
all these processes are finished, the threads are activated for
the next sampling time period. For a desired analysis time,
the operations are executed repeatedly and the resulting data
is transferred from the device memory to the host memory.

When profile output is examined, the triangularization pro-
cess takes 1% and triangle intersection tests correspond to
99% of total execution time. Hence, the first part is decided to
run on the CPU and the later part on the GPU (see Figure 4).

The data transfer from the CPU to the GPU and reverse
may take quite large fraction in total execution time, hence
the amount of data to transfer must be minimal. In this study,
the following items are transferred to GPU memory before
parallel execution starts:
• Coordinate information of triangles and calculated sun
angle information for simulation time intervals.

• Lists of the direct and diffusion radiation values of the
whole year for each triangle within the specified time
interval.

The input and output data take up nearly 140 MB of
memory in the GPU for the case studies presented in this
work.

FIGURE 5. Sun seeing facades are divided into small triangular areas for
calculation.

The Möller-Trumbore ray-triangle intersection algorithm
used for shading analysis and back-face detection algorithm
is implemented in a kernel function and executed in par-
allel [53]. The scenario consisting of 10 buildings with a
surface area of 2453.64m2 is divided into 5694 triangles with
an area of 4.3 m2 (see Figure 5). Based on this scenario,
with a half-hour sampling time resolution, the ray-triangle
intersection algorithm corresponds to about 99 percent of
the execution time of the DSRM model. An improvement
in the ray-triangle intersection algorithm will greatly affect
the DSRM model. Therefore, the ray-triangle intersection
algorithmwas executed in parallel on the GPU (see Figure 4).

The CUDA architecture allows a programmer to address
the threads in x, y and z dimensions. In this work, the threads
in x-dimension represent the triangles to be analyzed, and
threads in the y-dimension represent the triangles of all
buildings in the site in the GPU-DSRM model. The trian-
gle to be analyzed is subjected to the intersection test in
parallel manner with all other triangles. If any thread in
x-dimension returns true in response to the intersection test,
it is determined that the triangle is in shadow and does not
receive direct solar radiation. The results of solar radiation are
calculated according to these process outputs. An overview
of the kernel function of the GPU-DSRM model is given
in Algorithm 1.
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Even though threads in x-dimension perform the same
operations, they may not be able to finish their operations
evenly. If a triangle in x-dimension intersects with one of
the triangles in the y-dimension, the thread terminates the
operation immediately and passes to the next job. Idle threads
take the jobs in the queue. This procedure is repeated for the
desired sampling interval period.

In the GPU-DSRM algorithm, threads do not need to com-
municate with each other, and the synchronization of threads
is ensured by the barriers that are activated at certain intervals.
The barriers can be considered to cause inefficiency as a
common thought, and they are detrimental when used on all
threads to meet the requirements of just a few threads [42].
However, this is not the case in this application. To calcu-
late the next time interval, a common variable needs to be
increased. To be able to update this variable for the next time
period, we need to make sure that all threads are complete
with barriers.

During the test phase, the accuracy analysis was performed
before the performance review and the CPU versus GPU
based results were compared for errors that might occur due
to parallelism or floating point rounding differences. For this
purpose, many test scenarios were created and the results
were found to be the same. The test scenarios were conducted
with different input parameters and comparative performance
results are given in detail in the next section. Table 1 shows
hardware and software components used for computations
throughout the study.

TABLE 1. Test Computer Hardware and Software Components Used
During the Experiments.

V. RESULT AND DISCUSSION
A new settlement with 10 buildings in Yazlık region of
Sakarya is selected as testbed to validate the model and mea-
sure its performance (see Figure 5). The layout of the build-
ings are 2 rows and 5 columns with the distances between
the rows and the columns are approximately 10 m and 15 m
respectively. The buildings have the same dimensions: 25 m
height, 17mwidth and 23mdepth. The yellow triangles in the
figure represent the ones that receive direct sunlight, and the
gray ones show not receiving. This image is obtained from
the GPU-DSRM algorithm for just specific time; e.g, it was
captured for the January the 1st, at 16:30when the sun is in the
west direction and it is about sunset. Based on the sampling
interval, this calculations are repeated several times even in
one day throughout the observation period.

Test scenarios were created by using different triangle and
sampling intervals, and then experiments were conducted to
compare the performance of the GPU-DSRM model.

FIGURE 6. Comparison between CPU and GPU based implementation of
DSRM algorithm: a) Execution time, b) Speedup.

Figure 6.a shows execution time comparison between CPU
versus GPU implementation for 1910, 3754 and 5694 triangle
counts and 1 hour sampling interval time for 31 days of
data. As it can be seen from the figure, significant perfor-
mance improvement has been achieved, and the execution
time dropped down from 213.46 s to 5.13 s. with a speedup
value of 41.29. Figure 6.b shows speedup values, where it
initially increases with triangle count input linearly, and then
becomes almost steady due to hardware limits of the GPU
card is reached.

Triangle count and sampling interval time for a same target
area effect the resolution and the accuracy of the output. The
more triangle for the same surfaces makes the area smaller
in the computations ends up higher precision. Similarly,
the shorter sampling interval allows the use of more current
solar beam angle for each triangle that increases the accuracy
of the predictions. The goal of this research was to reduce
the execution time of the tool without losing precision and
accuracy at the output. Hence, in the experiments, both trian-
gle count and sampling interval time are changed to see their
impact over the execution time. Figure 7.a shows execution
time for CPU and Figure 7.b for GPU with respect to trian-
gle count and sampling interval time. The tool is executed
30 times according to different thread counts, and the average
value is reported in the experiments.

FIGURE 7. DSRM execution time for time interval 30, 60, 90, 120 minute
versus triangle count 1910, 3754, 5694, a) CPU-DSRM, b) GPU-DSRM.

During the development of the GPU-DSRM model, it is
observed that multiple triangle assignments to each thread
increases the average waiting time and irregularity of threads.
Considering the study model shown in Algorithm 1, it can
be said that the algorithm can be scaled depending on the
hardware, and the average waiting times of the threads are
minimized. Aside from concurrent execution in multiple
threads, some other improvements also employed in this new
implementation, some of them are itemized as follows:
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• Since the execution time of the serial version is very
long, the results of the analysis for a desired time interval
could be obtained at the end of long periods. Therefore,
the radiation calculations for each triangle had to be
performed at each time interval and these calculations
were kept in a database. In the CPU-DSRM model,
radiation calculations for any time interval could only
be achieved quickly in this way. Due to the fact that the
calculations made in the GPU are too short, and it is now
unnecessary to keep the individual radiation values for
each triangle separately. Instead, the average values of
the radiation data for each triangle are calculated, and
they kept in the memory rather than on the disk. In this
way, the requested intermediate values can be retrieved
in a very short time.

• In GPU-DSRM, primarily all surfaces are divided into
triangles and all triangles are subjected to back-face
detection algorithm. Then, the sun exposed triangles are
subjected to the intersection test with all other triangles
and the radiation calculations are made according to the
results of this test. If this algorithm was applied to the
surfaces first and the triangles were split, then it would
be necessary to keep the information on which surface
each triangle belongs to in GPU memory. This calcu-
lation is easily accomplished by scalar multiplication of
the surface normal and the solar normal data. In this way,
a search process and extra GPU memory data transfer
is eliminated. This results in both accuracy and perfor-
mance improvement. Therefore, the back-face detection
algorithm is performed on a triangular scale on the
GPU. Then, intersection testing and shading analysis are
performed. While the calculations in the CPU-DSRM
model last for several hours, the GPU-DSRM model
is completed in seconds and there is no need to keep
the temporal data generated in a database during the
calculations.

As the problem size (i.e. triangle count) increases,
the thread count also increases without affecting the exe-
cution time of the application till the hardware limits are
reached. In fact, it has been observed that if the number
of threads increased too much, this causes a negative effect
on execution time. Therefore, it is necessary to take the
optimum number of threads to meet the requirements and
in order to massively exploit GPU capabilities [54]. As a
result of the analysis, 4096 threads are found suitable for this
application.

It is seen that different block-thread combinations in GPU
do not change the execution time when the total thread count
is kept constant. For this reason, we primarily focused on the
total number of threads and it is set always as 4096. Then,
the number of threads per block is set as 128.

Further experiments have also been conducted to see how
triangle count affects the execution timewhile sampling inter-
val is kept constant, and how sampling interval time affect
the execution time while the triangle county kept constant.
Figure 8.a and Figure 8.b show the effect of the number of

FIGURE 8. The effects of triangle count and sampling interval time on
execution time: a) The triangle count is changing while the sampling
interval time is constant, b) The sampling interval is changing and while
the triangle count is constant.

triangles and the sampling interval on the execution time,
respectively.

As shown in Figure 8.a the whole year-round analysis
process takes an average of 46.86 second with the triangles
having a surface area of 2.71 m2 each (makes 9024 trian-
gles total) with constant 30-min time intervals. When the
surface area of the triangles is increased to 4.3 m2 (makes
5694 triangles), the execution time reduces to 27.38 second.
Some more experiments are conducted in a similar way with
the surface area of 12.84, 10.35, 6.53 and 6.26 m2 (1919,
2370, 3754 and 3920 triangles respectively), it is observed
that the execution time decreases linearly with the number of
triangles when the sampling interval time is constant.

Another parameter that affects the accuracy and execution
time of the tool is the sampling interval. Sampling interval
tells how often the calculations should be done considering
changing sun position. In order to see the effect of sampling
interval on execution time, initially sampling interval with
triangles having an area of 2.71m2 is set to 30 min. Figure 8.b
shows when the sampling interval is taken for 30 minutes,
the radiation analysis of the whole year takes place at an
average of 46.863 seconds. It is obvious that the execution
time decreases as sampling interval increases, and after a
certain point of sampling interval increase, there is not much
reduction in execution time because of the hardware limits of
the GPU card.

As a result, the number of triangles and the sampling period
affect the execution time, precision and accuracy. With the
earlier version of the serial DSRM model run for annual
analysis on the CPU, it took about 11 hours to complete the
job. When the serial version of the algorithm was improved
by eliminating the disk accesses, the execution time was
reduced to 6 hours. Although this is a successful performance
improvement, it is still far from an acceptable value for a
tool that is supposed to work interactively on the design files.
However, in the GPU based implementation, the same job
takes approximately 47 seconds for the same input parame-
ters. In this example, the working area is divided into 2.71m2

triangles and 30-minute time slices are taken for sampling
interval time for both runs. As it can be seen from this com-
parative study, the GPU-DSRM model runs about 842 times
faster than the earlier DSRM model for the same parameters.
It is expected that this acceleration will be much better when

VOLUME 8, 2020 45439



S. Kaynak et al.: GPU-Based Dynamic Solar Potential Estimation Tool Using 3D Plans

GPU cards are used with more cores. Therefore, the results
obtained in this study will lead to new researches for different
GPU cards.

The GPU-DSRM has been compared with other software
tools such as ArcGIS and ‘‘skymapping’’ in terms of perfor-
mance, easiness of usage, input data type and precision [26].
The common characteristics of these tools are that they all
belong to geometric tools and neglect the reflected radiation.

Although ArcGIS is used for mapping purposes in general,
it is also a widely preferred software tool that performs solar
potential analysis. However, ArcGIS cannot read 3D data as
input [55]; hence, the input image must be annotated with
auxiliary data by the user to compensate for missing infor-
mation before performing the solar analysis. Nevertheless,
the annotated input of structures does not provide as much
information as 3D plans have. The GPU-DSRM tool accepts
3D plans and performs radiation analysis using more com-
prehensive knowledge such as width, length, height, slope,
etc. about the buildings under consideration. As a result,
GPU-DSRM tool produces higher accuracy and resolution
results in solar estimations.

On the other end, the skymapping tool performs radiation
analysis using only the rooftops of buildings extracted from
3D plans. For example, the performance of our early DSRM
model was compared with the skymapping tool using the
same test bed in [26]. The GPU-DSRM developed in this
study is over performed the skymapping tool by employing
novel approaches in the algorithm. Since both applications
used the same test bed in their studies, comparative execution
times can be given as follows: the skymapping tool completed
the task using 69726 triangles in approximately 3 hours, while
the GPU-DSRM tool did the same task in approximately
6 minutes. As it can be seen from the results, the performance
of the DSRM algorithm is greatly improved by implementing
the algorithm in parallel using the GPU hardware with con-
siderably less cost.
Limitations: The tool developed in this study has the fol-

lowing limitations when compared with other tools in the
literature:
• In this study, the analysis covers only solar radiation
falling on the exterior of a building.

• The reflected radiation is neglected because it generally
constitutes only a small proportion of total radiation.

• The software tool is implemented using CUDA archi-
tecture because it is a widely used model, hence the tool
runs only on NVIDIA Graphics cards.

• The input files can be only in CityGML format because
it is a standard for 3D representation of structures.

• Covering material types over the facades was not
considered in this research because our goal was to
find the maximum solar potential that a building may
receive.

VI. CONCLUSION AND FUTURE WORK
Utilizing solar energy at buildings saves energy and reduce
the environmental pollution, hence the solar analysis is an

important task to explore the potential before or after the
construction. On the other hand, the demand for high preci-
sion and accurate predictions enforce algorithm developers
involve more parameters into their algorithm which causes
longer time to produce the expected results. As a result,
the existing solar analysis tools either produce limited out-
puts or they are not practical to use due to long running
times.

In this paper, a new geometric-based solar radiation esti-
mation tool (GPU-DSRM) development study is presented.
The tool analyzes buildings holistically using 3D building
plans in CityGML format. It also takes into account dynamic
shadow analysis and can be used anywhere in the world to
perform solar analysis. It is observed that it can take hours
or even days to complete a solar analysis task for sites with
multiple buildings when used similar tools in the literature
[8], [25], [26]. The long execution time had a deterrent effect
on the examination of alternative designs. Hence, the software
tool has been developed using up-to-date parallel GPU tech-
nologies which provides parallelism at the data level, ease of
use and price-performance advantage.

The algorithm has been implemented using NVIDIA
GTX950M GPU hardware and its performance measured
and compared against existing tools in the literature such
as ‘skymapping’ and ‘DSRM’. The measured speedups are
average of 30, 45 and 842 fold against the skymapping,
improved-DSRM and initial version of DSRM respectively.

It can be concluded that high resolution solar potential
analysis in 3D plans can be done in an acceptable time period
by using better GPU hardware which have more cores or by
using several GPU servers that contain multiple GPU boards.
In this way, architects and urban planners will be able to
examine alternative home designs in terms of solar potential
in shorter time.

In future studies, it is aimed that users will be able to
upload 3D building plans to the system with a web interface
and make all calculations on a remote server located in a
cloud. In this way, users who do not have high performance
hardware will be able to use this software remotely. The
calculations can be further accelerated by installing multiple
GPUs on the server(s) in the cloud.
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